Suppr超能文献

Cloud Removal in the Tibetan Plateau Region Based on Self-Attention and Local-Attention Models.

作者信息

Zheng Guoqiang, Zhao Tianle, Liu Yaohui

机构信息

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Fengming Road, Jinan 250101, China.

出版信息

Sensors (Basel). 2024 Dec 8;24(23):7848. doi: 10.3390/s24237848.

Abstract

Optical remote sensing images have a wide range of applications but are often affected by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to climate change, plays a crucial role in the East Asian water cycle and regional climate due to its snow cover. However, the rich ice and snow resources, rapid snow condition changes, and active atmospheric convection in the plateau as well as its surrounding mountainous areas, make optical remote sensing prone to cloud interference. This is particularly significant when monitoring snow cover changes, where cloud removal becomes essential considering the complex terrain and unique snow characteristics of the Tibetan Plateau. This paper proposes a novel Multi-Scale Attention-based Cloud Removal Model (MATT). The model integrates global and local information by incorporating multi-scale attention mechanisms and local interaction modules, enhancing the contextual semantic relationships and improving the robustness of feature representation. To improve the segmentation accuracy of cloud- and snow-covered regions, a cloud mask is introduced in the local-attention module, combined with the local interaction module to modulate and reconstruct fine-grained details. This enables the simultaneous representation of both fine-grained and coarse-grained features at the same level. With the help of multi-scale fusion modules and selective attention modules, MATT demonstrates excellent performance on both the Sen2_MTC_New and XZ_Sen2_Dataset datasets. Particularly on the XZ_Sen2_Dataset, it achieves outstanding results: PSNR = 29.095, SSIM = 0.897, FID = 125.328, and LPIPS = 0.356. The model shows strong cloud removal capabilities in cloud- and snow-covered areas in mountainous regions while effectively preserving snow information, and providing significant support for snow cover change studies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301a/11644867/bae6ff6a92f5/sensors-24-07848-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验