Suppr超能文献

采用高光谱成像技术改良的计算机辅助内镜诊断系统用于食管肿瘤的分类

Computer-aided endoscopic diagnostic system modified with hyperspectral imaging for the classification of esophageal neoplasms.

作者信息

Wang Yao-Kuang, Karmakar Riya, Mukundan Arvind, Men Ting-Chun, Tsao Yu-Ming, Lu Song-Cun, Wu I-Chen, Wang Hsiang-Chen

机构信息

Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

Front Oncol. 2024 Dec 2;14:1423405. doi: 10.3389/fonc.2024.1423405. eCollection 2024.

Abstract

INTRODUCTION

The early detection of esophageal cancer is crucial to enhancing patient survival rates, and endoscopy remains the gold standard for identifying esophageal neoplasms. Despite this fact, accurately diagnosing superficial esophageal neoplasms poses a challenge, even for seasoned endoscopists. Recent advancements in computer-aided diagnostic systems, empowered by artificial intelligence (AI), have shown promising results in elevating the diagnostic precision for early-stage esophageal cancer.

METHODS

In this study, we expanded upon traditional red-green-blue (RGB) imaging by integrating the YOLO neural network algorithm with hyperspectral imaging (HSI) to evaluate the diagnostic efficacy of this innovative AI system for superficial esophageal neoplasms. A total of 1836 endoscopic images were utilized for model training, which included 858 white-light imaging (WLI) and 978 narrow-band imaging (NBI) samples. These images were categorized into three groups, namely, normal esophagus, esophageal squamous dysplasia, and esophageal squamous cell carcinoma (SCC).

RESULTS

An additional set comprising 257 WLI and 267 NBI images served as the validation dataset to assess diagnostic accuracy. Within the RGB dataset, the diagnostic accuracies of the WLI and NBI systems for classifying images into normal, dysplasia, and SCC categories were 0.83 and 0.82, respectively. Conversely, the HSI dataset yielded higher diagnostic accuracies for the WLI and NBI systems, with scores of 0.90 and 0.89, respectively.

CONCLUSION

The HSI dataset outperformed the RGB dataset, demonstrating an overall diagnostic accuracy improvement of 8%. Our findings underscored the advantageous impact of incorporating the HSI dataset in model training. Furthermore, the application of HSI in AI-driven image recognition algorithms significantly enhanced the diagnostic accuracy for early esophageal cancer.

摘要

引言

食管癌的早期检测对于提高患者生存率至关重要,而内窥镜检查仍然是识别食管肿瘤的金标准。尽管如此,即使对于经验丰富的内镜医师来说,准确诊断浅表食管肿瘤也具有挑战性。由人工智能(AI)驱动的计算机辅助诊断系统的最新进展在提高早期食管癌的诊断精度方面显示出了令人鼓舞的结果。

方法

在本研究中,我们通过将YOLO神经网络算法与高光谱成像(HSI)相结合,对传统的红-绿-蓝(RGB)成像进行了扩展,以评估这种创新的AI系统对浅表食管肿瘤的诊断效果。总共1836张内镜图像用于模型训练,其中包括858张白光成像(WLI)和978张窄带成像(NBI)样本。这些图像被分为三组,即正常食管、食管鳞状上皮发育异常和食管鳞状细胞癌(SCC)。

结果

另外一组包含257张WLI和267张NBI图像作为验证数据集,用于评估诊断准确性。在RGB数据集中,WLI和NBI系统将图像分类为正常、发育异常和SCC类别的诊断准确率分别为0.83和0.82。相反,HSI数据集在WLI和NBI系统中产生了更高的诊断准确率,分别为0.90和0.89。

结论

HSI数据集的表现优于RGB数据集,整体诊断准确率提高了8%。我们的研究结果强调了将HSI数据集纳入模型训练的有利影响。此外,HSI在人工智能驱动的图像识别算法中的应用显著提高了早期食管癌的诊断准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a04e/11646837/97234d9d5997/fonc-14-1423405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验