Iwamoto Masami, Hirabayashi Satoko, Atsumi Noritoshi
Human Science Research-Domain, Toyota Central R&D Labs., Inc., Nagakute, Japan.
PLoS Comput Biol. 2024 Dec 17;20(12):e1012645. doi: 10.1371/journal.pcbi.1012645. eCollection 2024 Dec.
Voluntary breathing (VB), short-term exercise (STE), and mental stress (MS) can modulate breathing rate (BR), heart rate (HR), and blood pressure (BP), thereby affecting human physical and mental state. While existing experimental studies have explored the relationship between VB, STE, or MS and BR, HR, and BP changes, their findings remain fragmented due to individual differences and challenges in simultaneous, BR, HR, and BP measurements. We propose a computational approach for in-silico simultaneous measurements of the physiological values by comprehensive prediction of the respiratory and circulatory system responses to VB, STE, or MS. Our integrated model combines a respiratory system with a circulatory model, leveraging actor-critic reinforcement learning to control respiratory muscles. We introduce specific parameters to account for involuntary or VB and hyperventilation induced by STE. We modeled mental stress as an electrical input to the amygdala based on prior studies indicating that stress leads to amygdala hyperactivity. Our predictions for breathing rate (BR), tidal volume, minute ventilation, HR, and BP are validated against literature data obtained during various conditions, including different VB patterns (ranging from 6 to 14 bpm), active or passive knee flexion STE, and MS load. The model demonstrates good agreement with experimental results and highlights its ability to explore the mechanism of individual differences. Our model predicts heart rate variability (HRV) indices of total power spectral density and the ellipse area of Poincaré plot. Notably, slow deep breathing at a BR of 6 bpm increases HRV indices, promoting relaxation and cognitive performance. Conversely, MS elevates BP but reduces HRV indices, indicating an unstable and risky state for mental and physical health. Overall, our proposed computational approach provides simultaneous and reasonable predictions of various physiological values, accounting for individual variations through specific parameters.
自主呼吸(VB)、短期运动(STE)和精神压力(MS)可调节呼吸频率(BR)、心率(HR)和血压(BP),从而影响人的身心状态。虽然现有的实验研究已经探讨了VB、STE或MS与BR、HR和BP变化之间的关系,但由于个体差异以及同时测量BR、HR和BP所面临的挑战,其研究结果仍然零散。我们提出一种计算方法,通过全面预测呼吸系统和循环系统对VB、STE或MS的反应,在计算机上同时测量生理值。我们的集成模型将呼吸系统与循环模型相结合,利用行动者-评论家强化学习来控制呼吸肌。我们引入特定参数来解释非自主呼吸或VB以及STE引起的过度通气。基于先前表明压力会导致杏仁核活动亢进的研究,我们将精神压力建模为杏仁核的电输入。我们对呼吸频率(BR)、潮气量、分钟通气量、HR和BP的预测与在各种条件下获得的文献数据进行了验证,这些条件包括不同的VB模式(范围从6到14次/分钟)、主动或被动膝关节屈曲STE以及MS负荷。该模型与实验结果显示出良好的一致性,并突出了其探索个体差异机制的能力。我们的模型预测了总功率谱密度的心率变异性(HRV)指数和庞加莱图的椭圆面积。值得注意的是,BR为6次/分钟的缓慢深呼吸会增加HRV指数,促进放松和认知表现。相反,MS会升高BP但降低HRV指数,表明对身心健康而言处于不稳定且有风险的状态。总体而言,我们提出的计算方法能够同时且合理地预测各种生理值,并通过特定参数考虑个体差异。