Foldes Raffaello, Cerri Silvio Sergio, Marino Raffaele, Camporeale Enrico
<a href="https://ror.org/02feahw73">CNRS</a>, <a href="https://ror.org/05s6rge65">École Centrale de Lyon</a>, INSA de Lyon, <a href="https://ror.org/029brtt94">Université Claude Bernard Lyon 1</a>, <a href="https://ror.org/04dxeze48">Laboratoire de Mécanique des Fluides</a> et d'Acoustique, F-69134 Écully, France.
<a href="https://ror.org/019tgvf94">Université Côte d'Azur</a>, <a href="https://ror.org/039fj2469">Observatoire de la Côte d'Azur</a>, <a href="https://ror.org/02feahw73">CNRS</a>, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France.
Phys Rev E. 2024 Nov;110(5-2):055207. doi: 10.1103/PhysRevE.110.055207.
The properties of energy transfer in the kinetic range of plasma turbulence have fundamental implications on the turbulent heating of space and astrophysical plasmas. It was suggested that magnetic reconnection may be responsible for driving the subion scale cascade, and that this process would be characterized by a direct energy transfer toward even smaller scales (until dissipation), and a simultaneous inverse transfer of energy toward larger scales, until the ion break. Here we employ the space-filter technique on high-resolution 2D3V hybrid-Vlasov simulations of continuously driven turbulence providing quantitative evidence that magnetic reconnection is indeed able to trigger a dual energy transfer originating at subion scales.
等离子体湍流动力学范围内的能量转移特性对空间和天体物理等离子体的湍流加热具有根本性影响。有人提出,磁重联可能是驱动亚离子尺度级联的原因,并且这个过程的特征是能量直接向更小尺度转移(直至耗散),同时能量向更大尺度反向转移,直至离子尺度破裂。在这里,我们对连续驱动湍流的高分辨率二维三分量混合弗拉索夫模拟应用空间滤波技术,提供了定量证据,表明磁重联确实能够引发源自亚离子尺度的双能量转移。