Cheng Dan, Schwartzman Armin
Arizona State University.
University of California, San Diego.
Stat Probab Lett. 2020 Mar;158. doi: 10.1016/j.spl.2019.108672. Epub 2019 Nov 14.
Let and be smooth Gaussian random fields parameterized on Riemannian manifolds and , respectively, such that , where is a diffeomorphic transformation. We study the expected number and height distribution of the critical points of in connection with those of . As an important case, when is an anisotropic Gaussian random field, then we show that its expected number of critical points becomes proportional to that of an isotropic field , while the height distribution remains the same as that of .
设(X)和(Y)分别是在黎曼流形(M)和(N)上参数化的光滑高斯随机场,使得(Y = X\circ\varphi),其中(\varphi)是一个微分同胚变换。我们研究(Y)的临界点的期望数量和高度分布,并将其与(X)的临界点的期望数量和高度分布相关联。作为一个重要的情况,当(X)是一个各向异性高斯随机场时,我们证明其临界点的期望数量与一个各向同性场(Z)的临界点的期望数量成比例,而高度分布与(Z)的高度分布保持相同。