Suppr超能文献

具有直觉模糊信息的扩展决策试验与评价实验室方法:以电动汽车为例

Extended DEMATEL method with intuitionistic fuzzy information: A case of electric vehicles.

作者信息

Ye Qiwen

机构信息

School of Economics & Management, South China Normal University, Guangzhou, China.

出版信息

PLoS One. 2024 Dec 19;19(12):e0314650. doi: 10.1371/journal.pone.0314650. eCollection 2024.

Abstract

The Decision-Making Trial and Laboratory (DEMATEL) methodology excels in the analysis of interdependent factors within complex systems, with correlation data typically presented in crisp values. Nevertheless, the judgments made by decision-makers often possess a degree of fuzziness and uncertainty, rendering the sole reliance on precise values inadequate for representing real-world scenarios. To address this issue, our study extends the DEMATEL approach to more effectively and efficiently handle intuitionistic fuzzy information, which denotes the factor correlation information from decision-makers in the form of intuitionistic fuzzy terms. The paper aggregates the intuitionistic fuzzy correlation information from each decision-maker, employing operators designed for managing intuitionistic fuzzy numbers. The significance and categorization of factors are determined through intuitionistic fuzzy matrix operations. Additionally, a causal and effect diagram is constructed to elucidate the distinct roles of these factors. Finally, this study illustrates the applicability of our proposed method with a real-world case in the context of electric vehicles (EVs). The study's results identify four cause factors and six effect factors within EV battery technology. The identification and categorization of these factors will assist EV companies in implementing targeted measures to foster the advancement of the battery technology.

摘要

决策试验与实验室(DEMATEL)方法在分析复杂系统中的相互依存因素方面表现出色,其相关数据通常以清晰值呈现。然而,决策者做出的判断往往具有一定程度的模糊性和不确定性,这使得仅依靠精确值不足以代表现实世界的情况。为了解决这个问题,我们的研究扩展了DEMATEL方法,以更有效和高效地处理直觉模糊信息,这种信息以直觉模糊术语的形式表示决策者的因素相关信息。本文汇总了每个决策者的直觉模糊相关信息,采用了专门用于管理直觉模糊数的算子。通过直觉模糊矩阵运算确定因素的重要性和分类。此外,构建了因果图以阐明这些因素的不同作用。最后,本研究通过电动汽车(EV)背景下的一个实际案例说明了我们提出的方法的适用性。研究结果确定了电动汽车电池技术中的四个原因因素和六个结果因素。这些因素的识别和分类将有助于电动汽车公司采取针对性措施,促进电池技术的进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a338/11658640/e4d55671429a/pone.0314650.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验