Suppr超能文献

解决难治性精神分裂症中的脑代谢连通性问题:一种基于图论驱动的新型应用,将氟代脱氧葡萄糖正电子发射断层扫描(F-FDG-PET)与抗精神病药物剂量校正相结合。

Addressing brain metabolic connectivity in treatment-resistant schizophrenia: a novel graph theory-driven application of F-FDG-PET with antipsychotic dose correction.

作者信息

De Simone Giuseppe, Iasevoli Felice, Barone Annarita, Gaudieri Valeria, Cuocolo Alberto, Ciccarelli Mariateresa, Pappatà Sabina, de Bartolomeis Andrea

机构信息

Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples "Federico II", School of Medicine, Naples Italy, Via Pansini 5, 80131, Naples, Italy.

Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.

出版信息

Schizophrenia (Heidelb). 2024 Dec 19;10(1):116. doi: 10.1038/s41537-024-00535-4.

Abstract

Few studies using Positron Emission Tomography with F-fluorodeoxyglucose (F-FDG-PET) have examined the neurobiological basis of antipsychotic resistance in schizophrenia, primarily focusing on metabolic activity, with none investigating connectivity patterns. Here, we aimed to explore differential patterns of glucose metabolism between patients and controls (CTRL) through a graph theory-based approach and network comparison tests. PET scans with F-FDG were obtained by 70 subjects, 26 with treatment-resistant schizophrenia (TRS), 28 patients responsive to antipsychotics (nTRS), and 16 CTRL. Relative brain glucose metabolism maps were processed in the automated anatomical labeling (AAL)-Merged atlas template. Inter-subject connectivity matrices were derived using Gaussian Graphical Models and group networks were compared through permutation testing. A logistic model based on machine-learning was employed to estimate the association between the metabolic signals of brain regions and treatment resistance. To account for the potential influence of antipsychotic medication, we incorporated chlorpromazine equivalents as a covariate in the network analysis during partial correlation calculations. Additionally, the machine-learning analysis employed medication dose-stratified folds. Global reduced connectivity was detected in the nTRS (p-value = 0.008) and TRS groups (p-value = 0.001) compared to CTRL, with prominent alterations localized in the frontal lobe, Default Mode Network, and dorsal dopamine pathway. Disruptions in frontotemporal and striatal-cortical connectivity were detected in TRS but not nTRS patients. After adjusting for antipsychotic doses, alterations in the anterior cingulate, frontal and temporal gyri, hippocampus, and precuneus also emerged. The machine-learning approach demonstrated an accuracy ranging from 0.72 to 0.8 in detecting the TRS condition.

摘要

很少有使用氟脱氧葡萄糖正电子发射断层扫描(F-FDG-PET)的研究探讨精神分裂症中抗精神病药物耐药性的神经生物学基础,主要集中在代谢活动方面,没有一项研究调查连接模式。在此,我们旨在通过基于图论的方法和网络比较测试来探索患者与对照组(CTRL)之间葡萄糖代谢的差异模式。70名受试者进行了F-FDG-PET扫描,其中26例为难治性精神分裂症(TRS)患者,28例对抗精神病药物有反应的患者(nTRS),以及16名对照者。在自动解剖标记(AAL)合并图谱模板中处理相对脑葡萄糖代谢图谱。使用高斯图形模型得出受试者间连接矩阵,并通过置换测试比较组网络。采用基于机器学习的逻辑模型来估计脑区代谢信号与治疗耐药性之间的关联。为了考虑抗精神病药物的潜在影响,我们在偏相关计算的网络分析中纳入氯丙嗪等效剂量作为协变量。此外,机器学习分析采用药物剂量分层折叠。与CTRL相比,在nTRS组(p值 = 0.008)和TRS组(p值 = 0.001)中检测到全局连接性降低,额叶、默认模式网络和背侧多巴胺通路有明显改变。在TRS患者中检测到额颞叶和纹状体 - 皮质连接中断,但在nTRS患者中未检测到。在调整抗精神病药物剂量后,前扣带回、额叶和颞叶回、海马体和楔前叶也出现了改变。机器学习方法在检测TRS情况时的准确率在0.72至0.8之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd3/11659424/e916d43a8169/41537_2024_535_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验