Suppr超能文献

基于自由呼吸4D-CT的肿瘤运动幅度与影像组学联合预测早期肺癌的复发及生存情况

Predicting early stage lung cancer recurrence and survival from combined tumor motion amplitude and radiomics on free-breathing 4D-CT.

作者信息

Ouraou Emilie, Tonneau Marion, Le William T, Filion Edith, Campeau Marie-Pierre, Vu Toni, Doucet Robert, Bahig Houda, Kadoury Samuel

机构信息

Computer and Software Engineering Department, Polytechnique Montréal, Montréal, Quebec, Canada.

Radiation Oncology Department, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.

出版信息

Med Phys. 2025 Mar;52(3):1926-1940. doi: 10.1002/mp.17586. Epub 2024 Dec 20.

Abstract

BACKGROUND

Cancer control outcomes of lung cancer are hypothesized to be affected by several confounding factors, including tumor heterogeneity and patient history, which have been hypothesized to mitigate the dose delivery effectiveness when treated with radiation therapy. Providing an accurate predictive model to identify patients at risk would enable tailored follow-up strategies during treatment.

PURPOSE

Our goal is to demonstrate the added prognostic value of including tumor displacement amplitude in a predictive model that combines clinical features and computed tomography (CT) radiomics for 2-year recurrence and survival in non-small-cell lung cancer (NSCLC) patients treated with curative-intent stereotactic body radiation therapy.

METHODS

A cohort of 381 patients treated for primary lung cancer with radiotherapy was collected, each including a planning CT with a dosimetry plan, 4D-CT, and clinical information. From this cohort, 101 patients (26.5%) experienced cancer progression (locoregional/distant metastasis) or death within 2 years of the end of treatment. Imaging data was analyzed for radiomics features from the tumor segmented image, as well as tumor motion amplitude measured on 4D-CT. A random forest (RF) model was developed to predict the overall outcomes, which was compared to three other approaches - logistic regression, support vector machine, and convolutional neural networks.

RESULTS

A 6-fold cross-validation study yielded an area under the receiver operating characteristic curve of 72% for progression-free survival when combining clinical data with radiomics features and tumor motion using a RF model (72% sensitivity and 81% specificity). The combined model showed significant improvement compared to standard clinical data. Model performances for loco-regional recurrence and overall survival sub-outcomes were established at 73% and 70%, respectively. No comparative methods reached statistical significance in any data configuration.

CONCLUSIONS

Combined tumor respiratory motion and radiomics features from planning CT showed promising predictive value for 2-year tumor control and survival, indicating the potential need for improving motion management strategies in future studies using machine learning-based prognosis models.

摘要

背景

肺癌的癌症控制结果被认为受到多种混杂因素的影响,包括肿瘤异质性和患者病史,这些因素被认为在接受放射治疗时会降低剂量递送效果。提供一个准确的预测模型来识别有风险的患者将有助于在治疗期间制定个性化的随访策略。

目的

我们的目标是证明在一个结合临床特征和计算机断层扫描(CT)影像组学的预测模型中纳入肿瘤位移幅度,对于接受根治性立体定向体部放射治疗的非小细胞肺癌(NSCLC)患者的2年复发和生存情况具有额外的预后价值。

方法

收集了381例接受原发性肺癌放射治疗的患者队列,每位患者均包括带有剂量测定计划的计划CT、4D-CT和临床信息。在该队列中,101例患者(26.5%)在治疗结束后2年内出现癌症进展(局部/远处转移)或死亡。对肿瘤分割图像的影像组学特征以及在4D-CT上测量的肿瘤运动幅度进行了影像数据分析。开发了一种随机森林(RF)模型来预测总体结果,并将其与其他三种方法——逻辑回归、支持向量机和卷积神经网络进行比较。

结果

一项6折交叉验证研究表明,当使用RF模型将临床数据与影像组学特征及肿瘤运动相结合时,无进展生存的受试者工作特征曲线下面积为72%(敏感性72%,特异性81%)。与标准临床数据相比,联合模型显示出显著改善。局部区域复发和总生存子结果的模型性能分别为73%和70%。在任何数据配置下,没有比较方法达到统计学意义。

结论

计划CT的肿瘤呼吸运动和影像组学特征相结合,对2年肿瘤控制和生存显示出有前景的预测价值,表明在未来使用基于机器学习的预后模型的研究中可能需要改进运动管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e09/11880644/0feaa43d830b/MP-52-1926-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验