Suppr超能文献

使用机器学习算法预测前列腺癌根治术后前列腺特异性抗原(PSA)持续存在的模型

Predictive model for PSA persistence after radical prostatectomy using machine learning algorithms.

作者信息

Du Haotian, Wang Guipeng, Yan Yongchao, Li Shengxian, Yang Xuecheng

机构信息

Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Front Oncol. 2024 Dec 6;14:1452265. doi: 10.3389/fonc.2024.1452265. eCollection 2024.

Abstract

OBJECTIVE

To evaluate the efficacy of a machine learning model for predicting prostate-specific antigen (PSA) persistence after radical prostatectomy (RP).

METHODS

Data from 470 patients who underwent RP at the Affiliated Hospital of Qingdao University from January 2018 to June 2021 were retrospectively analyzed. Ten risk factors, including age, body mass index (BMI), preoperative PSA, biopsy Gleason score, total prostate specific antigen density (PSAD), clinical tumor stage, clinical lymph node status, seminal vesicle invasion, capsular invasion and positive surgical margin, were included in the analysis. The data were randomly divided into a training set and a test set at a ratio of 7:3, and seven different machine learning algorithms were compared. The confusion matrix, receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to evaluate the diagnostic performance of the model, and the random forest algorithm found to be the optimal prediction model.

RESULTS

In the entire cohort, 142 (30.21%) patients developed PSA persistence. Based on all included risk factors, the random forest model had the best effect among the seven models, with an AUC of 0.8607 in the training set and 0.8011 in the test set. The feature importance results showed that capsular invasion, positive surgical margin, preoperative PSA and biopsy Gleason score were the four most important risk factors for PSA persistence after RP.

CONCLUSION

The Random Forest algorithm performed excellently in this study and can be used to construct a predictive model for PSA persistence. By incorporating clinical data from the Asian region and exploring the risk factors for PSA persistence, this study contributes to the existing research and aids clinicians in assessing the risk of PSA persistence occurrence, enabling timely treatment planning and improving patient prognosis.

摘要

目的

评估一种机器学习模型预测前列腺癌根治术(RP)后前列腺特异性抗原(PSA)持续存在的疗效。

方法

回顾性分析2018年1月至2021年6月在青岛大学附属医院接受RP的470例患者的数据。分析纳入了10个风险因素,包括年龄、体重指数(BMI)、术前PSA、活检Gleason评分、总前列腺特异性抗原密度(PSAD)、临床肿瘤分期、临床淋巴结状态、精囊侵犯、包膜侵犯和手术切缘阳性。数据按7:3的比例随机分为训练集和测试集,并比较了七种不同的机器学习算法。使用混淆矩阵、受试者操作特征(ROC)曲线和ROC曲线下面积(AUC)评估模型的诊断性能,发现随机森林算法是最佳预测模型。

结果

在整个队列中,142例(30.21%)患者出现PSA持续存在。基于所有纳入的风险因素,随机森林模型在七种模型中效果最佳,训练集中的AUC为0.8607,测试集中的AUC为0.8011。特征重要性结果显示,包膜侵犯、手术切缘阳性、术前PSA和活检Gleason评分是RP后PSA持续存在的四个最重要风险因素。

结论

随机森林算法在本研究中表现出色,可用于构建PSA持续存在的预测模型。通过纳入亚洲地区的临床数据并探索PSA持续存在的风险因素,本研究为现有研究做出了贡献,并有助于临床医生评估PSA持续存在发生的风险,从而能够及时制定治疗计划并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7244/11659120/e0c2700c10fd/fonc-14-1452265-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验