Mohammad Gutama Ibrahim, Michoel Tom
Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway.
Bioinform Adv. 2024 Nov 23;4(1):vbae180. doi: 10.1093/bioadv/vbae180. eCollection 2024.
Gene expression prediction plays a vital role in transcriptome-wide association studies. Traditional models rely on genetic variants in close genomic proximity to the gene of interest to predict the genetic component of gene expression. Here, we propose a novel approach incorporating distal genetic variants acting through gene regulatory networks, in line with the omnigenic model of complex traits.
Using causal and coexpression Bayesian networks reconstructed from genomic and transcriptomic data, inference of gene expression from genotypic data is achieved through a two-step process. Initially, the expression level of each gene is predicted using its local genetic variants. The residual differences between the observed and predicted expression levels are then modeled using the genotype information of parent and/or grandparent nodes in the network. The final predicted expression level is obtained by summing the predictions from both models, effectively incorporating both local and distal genetic influences. Using regularized regression techniques for parameter estimation, we found that gene regulatory network-based gene expression prediction outperformed the traditional approach on simulated data and real data from yeast and humans. This study provides important insights into the challenge of gene expression prediction for transcriptome-wide association studies.
The code is available on Github at github.com/guutama/GRN-TI.
基因表达预测在全转录组关联研究中起着至关重要的作用。传统模型依靠与感兴趣基因紧密基因组邻近区域的遗传变异来预测基因表达的遗传成分。在此,我们提出了一种新方法,该方法纳入了通过基因调控网络起作用的远端遗传变异,这与复杂性状的泛基因模型一致。
利用从基因组和转录组数据重建的因果和共表达贝叶斯网络,通过两步过程实现从基因型数据推断基因表达。首先,使用每个基因的局部遗传变异预测其表达水平。然后,使用网络中父节点和/或祖节点的基因型信息对观察到的和预测的表达水平之间的残余差异进行建模。通过对两个模型的预测求和获得最终预测的表达水平,有效地纳入了局部和远端遗传影响。使用正则化回归技术进行参数估计,我们发现基于基因调控网络的基因表达预测在模拟数据以及来自酵母和人类的真实数据上优于传统方法。本研究为全转录组关联研究中的基因表达预测挑战提供了重要见解。
代码可在Github上获取,网址为github.com/guutama/GRN-TI。