Usami Takamasa, Sanada Yuya, Fujii Shumpei, Yamada Shinya, Shiratsuchi Yu, Nakatani Ryoichi, Hamaya Kohei
Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
Adv Sci (Weinh). 2025 Feb;12(7):e2413566. doi: 10.1002/advs.202413566. Epub 2024 Dec 25.
To develop voltage-controlled magnetization switching technologies for spintronics applications, a highly (422)-oriented CoFeSi layer on top of the piezoelectric PMN-PT(011) is experimentally demonstrated by inserting a vanadium (V) ultra-thin layer. The strength of the growth-induced magnetic anisotropy of the (422)-oriented CoFeSi layers can be artificially controlled by tuning the thicknesses of the inserted V and the grown CoFeSi layers. As a result, a giant converse magnetoelectric effect (over 10 s m) and a non-volatile binary state at zero electric field are simultaneously achieved in the (422)-oriented CoFeSi/V/PMN-PT(011) multiferroic heterostructure. This study leads to a way toward magnetoresistive random-access-memory (MRAM) with a low power writing technology.
为了开发用于自旋电子学应用的电压控制磁化切换技术,通过插入钒(V)超薄层,在实验上证明了在压电PMN-PT(011)顶部有高度(422)取向的CoFeSi层。通过调整插入的V层和生长的CoFeSi层的厚度,可以人为控制(422)取向的CoFeSi层的生长诱导磁各向异性强度。结果,在(422)取向的CoFeSi/V/PMN-PT(011)多铁异质结构中同时实现了巨大的逆磁电效应(超过10 s m)和零电场下的非易失性二元状态。这项研究为采用低功耗写入技术的磁阻随机存取存储器(MRAM)开辟了一条道路。