Suppr超能文献

基于长短期记忆网络(LSTM)利用数据特征和时空注意力估计锂离子电池的健康状态(SOH)

LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention.

作者信息

Xu Gengchen, Xu Jingyun, Zhu Yifan

机构信息

School of Engineering, Huzhou University, Huzhou, P. R. China.

Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, School of Engineering, Huzhou University, Huzhou, P. R. China.

出版信息

PLoS One. 2024 Dec 26;19(12):e0312856. doi: 10.1371/journal.pone.0312856. eCollection 2024.

Abstract

As the primary power source for electric vehicles, the accurate estimation of the State of Health (SOH) of lithium-ion batteries is crucial for ensuring the reliable operation of the power system. Long Short-Term Memory (LSTM), a special type of recurrent neural network, achieves sequence information estimation through a gating mechanism. However, traditional LSTM-based SOH estimation methods do not account for the fact that the degradation sequence of battery SOH exhibits trend-like nonlinearity and significant dynamic variations between samples. Therefore, this paper proposes an LSTM-based lithium-ion SOH estimation method incorporating data characteristics and spatio-temporal attention. First, considering the trend-like nonlinearity of the degradation sequence, which is initially gradual and then rapid, input features are filtered and divided into trend and non-trend features. Then, to address the significant dynamic variations between samples, especially for capacity regeneration,a spatio-temporal attention mechanism is designed to extract spatio-temporal features from multidimensional non-trend features. Subsequently, an LSTM model is built with trend features, spatio-temporal features, and actual capacity as inputs to estimate capacity. Finally, the model is trained and tested on different datasets. Experimental results demonstrate that the proposed method outperforms traditional methods in terms of SOH estimation accuracy and robustness.

摘要

作为电动汽车的主要动力源,准确估计锂离子电池的健康状态(SOH)对于确保电力系统的可靠运行至关重要。长短期记忆网络(LSTM)作为循环神经网络的一种特殊类型,通过门控机制实现序列信息估计。然而,传统的基于LSTM的SOH估计方法没有考虑到电池SOH的退化序列呈现出类似趋势的非线性以及样本之间显著的动态变化这一事实。因此,本文提出了一种结合数据特征和时空注意力的基于LSTM的锂离子SOH估计方法。首先,考虑到退化序列最初缓慢然后迅速的类似趋势的非线性,对输入特征进行滤波并分为趋势特征和非趋势特征。然后,为了解决样本之间显著的动态变化,特别是对于容量再生的情况,设计了一种时空注意力机制,从多维非趋势特征中提取时空特征。随后,构建一个以趋势特征、时空特征和实际容量作为输入的LSTM模型来估计容量。最后,在不同数据集上对模型进行训练和测试。实验结果表明,所提出的方法在SOH估计精度和鲁棒性方面优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ef/11671002/53b917b57bba/pone.0312856.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验