Suppr超能文献

使用自然语言处理从临床叙述中识别谵妄症状

Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.

作者信息

Chen Aokun, Paredes Daniel, Yu Zehao, Lou Xiwei, Brunson Roberta, Thomas Jamie N, Martinez Kimberly A, Lucero Robert J, Magoc Tanja, Solberg Laurence M, Snigurska Urszula A, Ser Sarah E, Prosperi Mattia, Bian Jiang, Bjarnadottir Ragnhildur I, Wu Yonghui

机构信息

Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.

UF Health Shands Hospital, Gainesville, FL, USA.

出版信息

Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:305-311. doi: 10.1109/ichi61247.2024.00046. Epub 2024 Aug 22.

Abstract

Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.

摘要

谵妄是注意力、意识或其他认知功能的急性下降或波动,可导致严重不良后果。尽管后果严重,但由于其短暂性和多样性,谵妄在患者电子健康记录(EHRs)中常常未被识别和编码。自然语言处理(NLP)是一种从临床叙述中提取医学概念的关键技术,在谵妄结局和症状研究中显示出巨大潜力。为协助谵妄的诊断和表型分析,我们组建了一个专家小组,对各种谵妄症状进行分类,制定注释指南,创建了一个包含各种谵妄症状的谵妄语料库,并开发了从临床记录中提取谵妄症状的NLP方法。我们比较了5种最先进的Transformer模型,包括2种通用领域的模型(BERT和RoBERTa)和3种临床领域的模型(BERT_MIMIC、RoBERTa_MIMIC和GatorTron)。GatorTron分别取得了最佳的严格F1分数0.8055和宽松F1分数0.8759。我们进行了误差分析,以确定在注释谵妄症状和开发NLP系统方面存在的挑战。据我们所知,这是第一个基于大语言模型的谵妄症状提取系统。我们的研究为谵妄的可计算表型和诊断方法的未来发展奠定了基础。

相似文献

1
Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.
Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:305-311. doi: 10.1109/ichi61247.2024.00046. Epub 2024 Aug 22.
5
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models.
J Healthc Inform Res. 2024 May 17;8(3):463-477. doi: 10.1007/s41666-024-00166-5. eCollection 2024 Sep.
6
Transformers for extracting breast cancer information from Spanish clinical narratives.
Artif Intell Med. 2023 Sep;143:102625. doi: 10.1016/j.artmed.2023.102625. Epub 2023 Jul 13.
7
Contextualized medication information extraction using Transformer-based deep learning architectures.
J Biomed Inform. 2023 Jun;142:104370. doi: 10.1016/j.jbi.2023.104370. Epub 2023 Apr 24.
9
Clinical concept extraction using transformers.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1935-1942. doi: 10.1093/jamia/ocaa189.
10

引用本文的文献

1
Data Science Opportunities To Improve Radiotherapy Planning and Clinical Decision Making.
Semin Radiat Oncol. 2024 Oct;34(4):379-394. doi: 10.1016/j.semradonc.2024.07.012.

本文引用的文献

1
A large language model for electronic health records.
NPJ Digit Med. 2022 Dec 26;5(1):194. doi: 10.1038/s41746-022-00742-2.
3
Natural Language Processing CAM Algorithm Improves Delirium Detection Compared With Conventional Methods.
Am J Med Qual. 2023;38(1):17-22. doi: 10.1097/JMQ.0000000000000090. Epub 2022 Oct 26.
5
Delirium diagnosis without a gold standard: Evaluating diagnostic accuracy of combined delirium assessment tools.
PLoS One. 2022 Apr 18;17(4):e0267110. doi: 10.1371/journal.pone.0267110. eCollection 2022.
6
Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
J Gerontol A Biol Sci Med Sci. 2022 Mar 3;77(3):524-530. doi: 10.1093/gerona/glaa275.
7
Assessing the Accuracy of International Classification of Diseases (ICD) Coding for Delirium.
J Appl Gerontol. 2022 May;41(5):1485-1490. doi: 10.1177/07334648211067526. Epub 2022 Feb 17.
8
Clinical concept extraction using transformers.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1935-1942. doi: 10.1093/jamia/ocaa189.
10
Undiagnosed delirium is frequent and difficult to predict: Results from a prevalence survey of a tertiary hospital.
J Clin Nurs. 2019 Jul;28(13-14):2537-2542. doi: 10.1111/jocn.14833. Epub 2019 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验