Suppr超能文献

一种将观测优先级编码与问题分解策略相结合的空间望远镜调度方法。

A Space Telescope Scheduling Approach Combining Observation Priority Coding with Problem Decomposition Strategies.

作者信息

Zhang Kaiyuan, Ye Bao-Lin, Xia Xiaoyun, Wang Zijia, Zhang Xianchao, Jiang Hai

机构信息

School of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.

School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.

出版信息

Biomimetics (Basel). 2024 Nov 21;9(12):718. doi: 10.3390/biomimetics9120718.

Abstract

With the increasing number of space debris, the demand for telescopes to observe space debris is also constantly increasing. The telescope observation scheduling problem requires algorithms to schedule telescopes to maximize observation value within the visible time constraints of space debris, especially when dealing with large-scale problems. This paper proposes a practical heuristic algorithm to solve the telescope observation of space debris scheduling problem. In order to accelerate the solving speed of algorithms on large-scale problems, this paper combines the characteristics of the problem and partitions the large-scale problem into multiple sub-problems according to the observation time. In each sub-problem, a coding method based on the priority of the target going into the queue is proposed in combination with the actual observation data, and a decoding method matching the coding method is designed. In the solution process for each sub-problem, an adaptive variable neighborhood search is used to solve the space debris observation plan. When solving all sub-problems is completed, the observation plans obtained on all sub-problems are combined to obtain the observation plan of the original problem.

摘要

随着空间碎片数量的不断增加,对用于观测空间碎片的望远镜的需求也在持续增长。望远镜观测调度问题要求算法在空间碎片的可见时间约束内调度望远镜,以最大化观测价值,尤其是在处理大规模问题时。本文提出了一种实用的启发式算法来解决空间碎片的望远镜观测调度问题。为了加快算法在大规模问题上的求解速度,本文结合问题的特点,根据观测时间将大规模问题划分为多个子问题。在每个子问题中,结合实际观测数据,提出了一种基于目标入队优先级的编码方法,并设计了与之匹配的解码方法。在每个子问题的求解过程中,采用自适应可变邻域搜索来求解空间碎片观测计划。当所有子问题求解完成后,将所有子问题上获得的观测计划进行合并,得到原问题的观测计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11673886/99851896cf45/biomimetics-09-00718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验