Salcedo Edwin
Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.
J Imaging. 2024 Dec 18;10(12):326. doi: 10.3390/jimaging10120326.
Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition. While effective, this cloud-centric approach can result in increased system response times. Alternatively, the emerging paradigm of edge computing, which involves moving computational processes to local devices, offers the potential to reduce latency, enable real-time surveillance, and eliminate reliance on internet connectivity. Furthermore, recent advancements in low-cost, compact microcomputers capable of handling complex inference tasks (e.g., Jetson Nano Orin, Jetson Xavier NX, and Khadas VIM4) have created exciting opportunities for deploying CVGR systems at the edge. This paper reports the state of the art in gait data acquisition modalities, feature representations, models, and architectures for CVGR systems suitable for edge computing. Additionally, this paper addresses the general limitations and highlights new avenues for future research in the promising intersection of CVGR and edge computing.
基于计算机视觉的步态识别(CVGR)是一项近年来因其非侵入性、不显眼且难以隐藏的特性而备受关注的技术。除了在生物识别领域的应用外,CVGR在医疗保健和人机交互方面也具有巨大潜力。当前的CVGR系统通常会将收集到的数据传输到云服务器进行基于机器学习的步态模式识别。虽然这种方法有效,但这种以云为中心的方式可能会导致系统响应时间增加。相比之下,新兴的边缘计算范式,即将计算过程转移到本地设备,具有减少延迟、实现实时监控以及消除对互联网连接依赖的潜力。此外,近年来在能够处理复杂推理任务的低成本、紧凑型微型计算机(如Jetson Nano Orin、Jetson Xavier NX和Khadas VIM4)方面的进展,为在边缘部署CVGR系统创造了令人兴奋的机会。本文报告了适用于边缘计算的CVGR系统在步态数据采集方式、特征表示、模型和架构方面的最新进展。此外,本文还讨论了一般局限性,并突出了在CVGR与边缘计算这一有前景的交叉领域未来研究的新途径。