Sporer Emanuel, Deville Claire, Straathof Natan J W, Bruun Linda M, Köster Ulli, Jensen Mikael, Andresen Thomas L, Kempen Paul J, Henriksen Jonas R, Jensen Andreas I
The Hevesy Laboratory, DTU Health Technology, Frederiksborgvej 399, 4000, Roskilde, Denmark.
Section for Cell and Drug Technologies, DTU Health Technology, Produktionstorvet Bld. 423, 2800, Lyngby, Denmark.
EJNMMI Radiopharm Chem. 2024 Dec 30;9(1):92. doi: 10.1186/s41181-024-00309-4.
Brachytherapy (BT) is routinely used in the treatment of various cancers. Current BT relies on the placement of large sources of radioactivity at the tumor site, requiring applicators that may cause local traumas and lesions. Further, they suffer from inflexibility in where they can be placed and some sources reside permanently in the body, causing potential long-term discomfort. These issues can be circumvented through injectable sources, prepared as biodegradable materials containing radionuclides that form solid seeds after administration. The level of radioactivity contained in such seeds must be sufficient to achieve substantial local irradiation. In this report, we investigate two different strategies for biodegradable BT seeds.
The first strategy entails injectable seeds based on Pd-labeled palladium-gold alloy nanoparticles ([Pd]PdAuNPs). These were prepared by combining [Pd]PdHCl and AuHCl, followed by lipophilic surface coating and dispersed in lactose octaisobutyrate and ethanol (LOIB:EtOH), in overall radiochemical yield (RCY) of 83%. With the second strategy, [Pd]Pd-SSIB was prepared by conjugating the [16]aneS chelator with lipophilic sucrose septaisobutyrate (SSIB) followed by complexation with [Pd]PdHCl (RCY = 99%) and mixed with LOIB:EtOH. [Pd]Pd-SSIB was likewise formulated as injectable liquid forming seeds by mixing with LOIB. Both formulations reached activities of 1.0-1.5 GBq/mL and negligible release of radioactivity after injection of 100 µL (100-150 MBq) into aqueous buffer or mouse serum of less than 1% over one month.
Both strategies for forming injectable BT seeds containing high Pd activity resulted in high radiolabeling yields, high activity per seed, and high activity retention. We consider both strategies suitable for BT, with the preferable strategy using a [16]aneS chelator due to its higher biodegradability.
近距离放射治疗(BT)常用于多种癌症的治疗。当前的BT依赖于在肿瘤部位放置大量放射性源,这需要使用可能导致局部创伤和病变的施源器。此外,它们在放置位置上缺乏灵活性,并且一些源会永久留在体内,导致潜在的长期不适。通过可注射源可以规避这些问题,可注射源制备为含有放射性核素的可生物降解材料,给药后形成固体籽源。此类籽源所含的放射性水平必须足以实现显著的局部照射。在本报告中,我们研究了两种用于可生物降解BT籽源的不同策略。
第一种策略是基于钯标记的钯金合金纳米颗粒([Pd]PdAuNPs)的可注射籽源。通过将[Pd]PdHCl和AuHCl混合,随后进行亲脂性表面包覆,并分散在乳糖八异丁酸酯和乙醇(LOIB:EtOH)中制备这些纳米颗粒,总放射化学产率(RCY)为83%。采用第二种策略,通过将[16]aneS螯合剂与亲脂性蔗糖七异丁酸酯(SSIB)共轭,随后与[Pd]PdHCl络合(RCY = 99%)并与LOIB:EtOH混合,制备了[Pd]Pd-SSIB。[Pd]Pd-SSIB同样通过与LOIB混合配制成可注射液体,形成籽源。两种制剂在向水性缓冲液或小鼠血清中注射100 μL(100 - 150 MBq)后,活性均达到1.0 - 1.5 GBq/mL,且在一个月内放射性释放可忽略不计,释放量小于1%。
两种形成含有高钯活性的可注射BT籽源的策略均产生了高放射性标记产率、每颗籽源的高活性以及高活性保留率。我们认为这两种策略都适用于BT,由于其更高的生物降解性,使用[16]aneS螯合剂的策略更为可取。