Suppr超能文献

细胞形状通过细胞内流体动力学调节有丝分裂纺锤体定位力。

Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics.

作者信息

Xie Jing, Najafi Javad, Nommick Aude, Lederer Luc, Salle Jeremy, Dmitrieff Serge, Lacroix Benjamin, Dumont Julien, Minc Nicolas

机构信息

Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France.

Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.

出版信息

Curr Biol. 2025 Jan 20;35(2):413-421.e6. doi: 10.1016/j.cub.2024.11.055. Epub 2025 Jan 3.

Abstract

The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.

摘要

有丝分裂纺锤体定位和定向的调控对于发育中胚胎和组织的形态发生至关重要。在许多多细胞环境中,细胞几何形状已被证明对纺锤体定位有重大影响,纺锤体通常沿最长的细胞形状轴排列。然而,迄今为止,我们仍然不清楚定位、定向或固定有丝分裂纺锤体的细胞内力的性质和大小如何依赖于细胞几何形状。在这里,我们使用体内磁镊直接测量在早期胚胎发育过程中采用不同形状的海胆细胞中心维持有丝分裂纺锤体的力。我们发现纺锤体由粘弹性力固定,随着细胞在早期发育过程中变得更加细长,粘弹性力的幅度逐渐增加。通过将微加工腔室中的直接细胞形状操作与体内力测量相结合,我们确定了纺锤体相关力如何随着细胞形状各向异性呈剂量依赖性增加。细胞质流动分析和流体动力学模拟表明,这种几何形状依赖性的机械增强是由于纺锤体与细胞边界之间更强的流体动力学耦合导致的,随着细胞变得更加细长,这种耦合会抑制细胞质流动和纺锤体移动性。这些发现确定了细胞形状如何影响纺锤体相关力,并提出了一种由细胞内流体动力学介导的形状感知和分裂定位的新机制,对早期胚胎形态发生具有功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验