Suppr超能文献

利用主导晶面调控量子点的热学和能量存储特性:以硅为例

Engineering the Thermal and Energy-Storage Properties in Quantum Dots Using Dominant Faceting: The Case Study of Silicon.

作者信息

Galář Pavel, Kopenec Jakub, Král Robert, Matějka Filip, Zemenová Petra, Dopita Milan, Hapala Prokop, König Dirk, Vrbka Pavel, Kůsová Kateřina

机构信息

Institute of Physics of the CAS, v.v.i., Cukrovarnická 10, 162 00 Prague 6, Czechia.

Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha 2, Czechia.

出版信息

ACS Nano. 2025 Jan 21;19(2):2196-2212. doi: 10.1021/acsnano.4c11376. Epub 2025 Jan 6.

Abstract

The storage and release of energy is an economic cornerstone. In quantum dots (QDs), energy storage is mostly governed by their surfaces, in particular by surface chemistry and faceting. The impact of surface free energy (SFE) through surface faceting has already been studied in QDs. Here, we introduce dominant faceting representing the structural order of the surface. In particular, we propose that realistic QDs attain complicated polyhedral quasi-spherical shapes while keeping the dominance of a certain type of facet. The type of dominant facet determines the rates of surface-related processes. Therefore, by connecting dominant faceting with SFE, trends analogical to bulk material are kept despite the lack of evident microscopic shape control. To demonstrate the applicability of dominant faceting, we synthesize sets of silicon QDs with sizes around 5 nm and classify them based on increasing SFE of the corresponding analytic geometrical models, using a detailed surface chemistry analysis. Total energies released during oxidation of the synthesized QDs reach the theoretical limit, unlike in the reference, "large" (>100 nm) silicon nanoparticles, which release about 15% less energy. Next, we perform a comprehensive experimental study of dehydrogenation and thermal oxidation of the synthesized QDs in the temperature range of 25-1100 °C, identifying SFE as the key factor determining their thermal stability and surface reactivity. In particular, four distinctive stages of energy release were observed with onset temperatures ranging between 140 and 250 °C, ≈500 and 650-700 °C, respectively, for the SFE-differing samples. Finally, the thermal oxidation of the synthesized QDs is completed at lower temperatures with increasing SFE, decreasing from 1065 to 970 °C and being > 150 °C lower in QDs than in the larger reference nanoparticles. Therefore, despite a rich mixture of features, our description based on linking dominant faceting with SFE allows us to fully explain all the observed trends, demonstrating both the potential of SFE-based engineering of energy-storage properties in QDs and the prospects of silicon QDs as an energy-storage material.

摘要

能量的存储与释放是经济的基石。在量子点(QD)中,能量存储主要由其表面决定,特别是表面化学和晶面。通过表面晶面对表面自由能(SFE)的影响已在量子点中得到研究。在此,我们引入代表表面结构有序性的主导晶面。特别是,我们提出实际的量子点会呈现复杂的多面体准球形形状,同时保持某种类型晶面的主导地位。主导晶面的类型决定了与表面相关过程的速率。因此,通过将主导晶面与SFE联系起来,尽管缺乏明显的微观形状控制,但仍保持了与块体材料类似的趋势。为了证明主导晶面的适用性,我们合成了尺寸约为5 nm的硅量子点集,并使用详细的表面化学分析,根据相应解析几何模型不断增加的SFE对它们进行分类。合成的量子点氧化过程中释放的总能量达到了理论极限,这与参考的“大”(>100 nm)硅纳米颗粒不同,后者释放的能量少约15%。接下来,我们对合成的量子点在25 - 1100 °C温度范围内的脱氢和热氧化进行了全面的实验研究,确定SFE是决定其热稳定性和表面反应性的关键因素。特别是,对于不同SFE的样品,观察到了四个不同的能量释放阶段,起始温度分别在140至250 °C、≈500和650 - 700 °C之间。最后,合成的量子点的热氧化在较低温度下随着SFE的增加而完成,从1065 °C降至970 °C,量子点中的温度比更大的参考纳米颗粒低>150 °C。因此,尽管有丰富的特征组合,但我们基于将主导晶面与SFE联系起来的描述使我们能够充分解释所有观察到的趋势,展示了基于SFE的量子点储能特性工程的潜力以及硅量子点作为储能材料的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e3/11760162/90ec6233e7d5/nn4c11376_0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验