Suppr超能文献

具有椭圆形状的相依数据的贝叶斯回归分析。

Bayesian Regression Analysis for Dependent Data with an Elliptical Shape.

作者信息

Yu Yian, Tang Long, Ren Kang, Chen Zhonglue, Chen Shengdi, Shi Jianqing

机构信息

Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan 430074, China.

出版信息

Entropy (Basel). 2024 Dec 9;26(12):1072. doi: 10.3390/e26121072.

Abstract

This paper proposes a parametric hierarchical model for functional data with an elliptical shape, using a Gaussian process prior to capturing the data dependencies that reflect systematic errors while modeling the underlying curved shape through a von Mises-Fisher distribution. The model definition, Bayesian inference, and MCMC algorithm are discussed. The effectiveness of the model is demonstrated through the reconstruction of curved trajectories using both simulated and real-world examples. The discussion in this paper focuses on two-dimensional problems, but the framework can be extended to higher-dimensional spaces, making it adaptable to a wide range of applications.

摘要

本文提出了一种用于椭圆形状功能数据的参数化层次模型,使用高斯过程先验来捕获反映系统误差的数据依赖性,同时通过冯·米塞斯 - 费舍尔分布对潜在的曲线形状进行建模。讨论了模型定义、贝叶斯推断和MCMC算法。通过使用模拟和实际示例对曲线轨迹进行重建,证明了该模型的有效性。本文的讨论集中在二维问题上,但该框架可以扩展到更高维空间,使其适用于广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31fd/11675188/0fbc496f8a19/entropy-26-01072-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验