Yu Yian, Tang Long, Ren Kang, Chen Zhonglue, Chen Shengdi, Shi Jianqing
Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan 430074, China.
Entropy (Basel). 2024 Dec 9;26(12):1072. doi: 10.3390/e26121072.
This paper proposes a parametric hierarchical model for functional data with an elliptical shape, using a Gaussian process prior to capturing the data dependencies that reflect systematic errors while modeling the underlying curved shape through a von Mises-Fisher distribution. The model definition, Bayesian inference, and MCMC algorithm are discussed. The effectiveness of the model is demonstrated through the reconstruction of curved trajectories using both simulated and real-world examples. The discussion in this paper focuses on two-dimensional problems, but the framework can be extended to higher-dimensional spaces, making it adaptable to a wide range of applications.
本文提出了一种用于椭圆形状功能数据的参数化层次模型,使用高斯过程先验来捕获反映系统误差的数据依赖性,同时通过冯·米塞斯 - 费舍尔分布对潜在的曲线形状进行建模。讨论了模型定义、贝叶斯推断和MCMC算法。通过使用模拟和实际示例对曲线轨迹进行重建,证明了该模型的有效性。本文的讨论集中在二维问题上,但该框架可以扩展到更高维空间,使其适用于广泛的应用。