Shibue Ryohei, Iwata Tomoharu
Communication Science Laboratories, NTT Corporation, Kanagawa, Japan.
Communication Science Laboratories, NTT Corporation, Kyoto, Japan.
PLoS Comput Biol. 2024 Dec 30;20(12):e1012620. doi: 10.1371/journal.pcbi.1012620. eCollection 2024 Dec.
Spike train modeling across large neural populations is a powerful tool for understanding how neurons code information in a coordinated manner. Recent studies have employed marked point processes in neural population modeling. The marked point process is a stochastic process that generates a sequence of events with marks. Spike train models based on such processes use the waveform features of spikes as marks and express the generative structure of the unsorted spikes without applying spike sorting. In such modeling, the goal is to estimate the joint mark intensity that describes how observed covariates or hidden states (e.g., animal behaviors, animal internal states, and experimental conditions) influence unsorted spikes. A major issue with this approach is that existing joint mark intensity models are not designed to capture high-dimensional and highly nonlinear observations. To address this limitation, we propose a new joint mark intensity model based on a variational autoencoder, capable of representing the dependency structure of unsorted spikes on observed covariates or hidden states in a data-driven manner. Our model defines the joint mark intensity as a latent variable model, where a neural network decoder transforms a shared latent variable into states and marks. With our model, we derive a new log-likelihood lower bound by exploiting the variational evidence lower bound and upper bound (e.g., the χ upper bound) and use this new lower bound for parameter estimation. To demonstrate the strength of this approach, we integrate our model into a state space model with a nonlinear embedding to capture the hidden state dynamics underlying the observed covariates and unsorted spikes. This enables us to reconstruct covariates from unsorted spikes, known as neural decoding. Our model achieves superior performance in prediction and decoding tasks for synthetic data and the spiking activities of place cells.
跨大型神经群体的脉冲序列建模是理解神经元如何以协调方式编码信息的强大工具。最近的研究在神经群体建模中采用了标记点过程。标记点过程是一种随机过程,它生成带有标记的事件序列。基于此类过程的脉冲序列模型将脉冲的波形特征用作标记,并在不应用脉冲排序的情况下表达未分类脉冲的生成结构。在这种建模中,目标是估计联合标记强度,该强度描述了观察到的协变量或隐藏状态(例如,动物行为、动物内部状态和实验条件)如何影响未分类的脉冲。这种方法的一个主要问题是现有的联合标记强度模型并非设计用于捕获高维和高度非线性的观测值。为了解决这一限制,我们提出了一种基于变分自编码器的新联合标记强度模型,该模型能够以数据驱动的方式表示未分类脉冲对观察到的协变量或隐藏状态的依赖结构。我们的模型将联合标记强度定义为一个潜在变量模型,其中神经网络解码器将一个共享的潜在变量转换为状态和标记。利用我们的模型,我们通过利用变分证据下界和上界(例如,χ上界)推导出一个新的对数似然下界,并将这个新下界用于参数估计。为了证明这种方法的优势,我们将我们的模型集成到一个具有非线性嵌入的状态空间模型中,以捕获观察到的协变量和未分类脉冲背后的隐藏状态动态。这使我们能够从未分类的脉冲中重建协变量,即所谓的神经解码。我们的模型在合成数据和位置细胞的脉冲活动的预测和解码任务中取得了卓越的性能。