Suppr超能文献

利用人工智能改善精神科服务:机遇与挑战。

Improving Psychiatry Services with Artificial Intelligence: Opportunities and Challenges.

作者信息

Balli Muhammed, Doğan Aslı Ercan, Eser Hale Yapici

出版信息

Turk Psikiyatri Derg. 2024;35(4):317-328. doi: 10.5080/u27604.

Abstract

Mental disorders are a critical global public health problem due to their increasing prevalence, rising costs, and significant economic burden. Despite efforts to increase the mental health workforce in Türkiye, there is a significant shortage of psychiatrists, limiting the quality and accessibility of mental health services. This review examines the potential of artificial intelligence (AI), especially large language models, to transform psychiatric care in the world and in Türkiye. AI technologies, including machine learning and deep learning, offer innovative solutions for the diagnosis, personalization of treatment, and monitoring of mental disorders using a variety of data sources, such as speech patterns, neuroimaging, and behavioral measures. Although AI has shown promising capabilities in improving diagnostic accuracy and access to mental health services, challenges such as algorithmic biases, data privacy concerns, ethical implications, and the confabulation phenomenon of large language models prevent the full implementation of AI in practice. The review highlights the need for interdisciplinary collaboration to develop culturally and linguistically adapted AI tools, particularly in the Turkish context, and suggests strategies such as fine-tuning, retrieval-augmented generation, and reinforcement learning from human feedback to increase AI reliability. Advances suggest that AI can improve mental health care by increasing diagnostic accuracy and accessibility while preserving the essential human elements of medical care. Current limitations need to be addressed through rigorous research and ethical frameworks for effective and equitable integration of AI into mental health care. Keywords: Artificial İntelligence, Health, Large Language Model, Machine Learning, Psychiatry.

摘要

精神障碍是一个严峻的全球公共卫生问题,因其患病率不断上升、成本增加以及巨大的经济负担。尽管土耳其努力增加精神卫生工作人员,但精神科医生严重短缺,限制了精神卫生服务的质量和可及性。本综述探讨了人工智能(AI),尤其是大语言模型,在全球和土耳其改变精神科护理的潜力。包括机器学习和深度学习在内的人工智能技术,利用语音模式、神经成像和行为测量等各种数据源,为精神障碍的诊断、治疗个性化和监测提供了创新解决方案。尽管人工智能在提高诊断准确性和精神卫生服务可及性方面已展现出有前景的能力,但算法偏差、数据隐私问题、伦理影响以及大语言模型的虚构现象等挑战阻碍了人工智能在实践中的全面应用。该综述强调了跨学科合作以开发文化和语言适配的人工智能工具的必要性,特别是在土耳其背景下,并提出了诸如微调、检索增强生成以及从人类反馈进行强化学习等策略,以提高人工智能的可靠性。进展表明,人工智能可以通过提高诊断准确性和可及性,同时保留医疗护理中至关重要的人文元素,来改善精神卫生保健。当前的局限性需要通过严谨的研究和伦理框架来解决,以便有效地、公平地将人工智能整合到精神卫生保健中。关键词:人工智能、健康、大语言模型、机器学习、精神病学。

相似文献

1
Improving Psychiatry Services with Artificial Intelligence: Opportunities and Challenges.
Turk Psikiyatri Derg. 2024;35(4):317-328. doi: 10.5080/u27604.
4
Artificial Intelligence in Psychiatry.
Psychiatr Danub. 2023 Oct;35(Suppl 2):15-19.
5
Diagnostic accuracy of large language models in psychiatry.
Asian J Psychiatr. 2024 Oct;100:104168. doi: 10.1016/j.ajp.2024.104168. Epub 2024 Jul 25.
7
The application of artificial intelligence in the field of mental health: a systematic review.
BMC Psychiatry. 2025 Feb 14;25(1):132. doi: 10.1186/s12888-025-06483-2.
8
Applications of Artificial Intelligence in Psychiatric Nursing: A Scope Review.
Stud Health Technol Inform. 2024 Jul 24;315:74-80. doi: 10.3233/SHTI240109.
9
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.

本文引用的文献

1
2
Artificial Intelligence in Healthcare and Psychiatry.
Acad Psychiatry. 2025 Feb;49(1):10-12. doi: 10.1007/s40596-024-02036-z. Epub 2024 Sep 23.
3
Computational analysis of linguistic features in speech samples of first-episode bipolar disorder and psychosis.
J Affect Disord. 2024 Oct 15;363:340-347. doi: 10.1016/j.jad.2024.07.102. Epub 2024 Jul 17.
4
AI machine translation tools must be taught cultural differences too.
Nature. 2024 Jun;630(8018):820. doi: 10.1038/d41586-024-02091-4.
5
Large language models in psychiatry: Opportunities and challenges.
Psychiatry Res. 2024 Sep;339:116026. doi: 10.1016/j.psychres.2024.116026. Epub 2024 Jun 11.
6
The use of machine learning on administrative and survey data to predict suicidal thoughts and behaviors: a systematic review.
Front Psychiatry. 2024 Mar 4;15:1291362. doi: 10.3389/fpsyt.2024.1291362. eCollection 2024.
7
Natural language processing for defining linguistic features in schizophrenia: A sample from Turkish speakers.
Schizophr Res. 2024 Apr;266:183-189. doi: 10.1016/j.schres.2024.02.026. Epub 2024 Feb 27.
8
Beyond rating scales: With targeted evaluation, large language models are poised for psychological assessment.
Psychiatry Res. 2024 Mar;333:115667. doi: 10.1016/j.psychres.2023.115667. Epub 2023 Dec 10.
9
Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language Models.
PLOS Digit Health. 2023 Nov 1;2(11):e0000388. doi: 10.1371/journal.pdig.0000388. eCollection 2023 Nov.
10
Large language models show human-like content biases in transmission chain experiments.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2313790120. doi: 10.1073/pnas.2313790120. Epub 2023 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验