Bhattacharya Soham, Sen Madhab Kumar, Hamouzová Katerina, Košnarová Pavlína, Bharati Rohit, Menendez Julio, Soukup Josef
Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
Plant Virus and Vector Interactions, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic.
Plants (Basel). 2024 Dec 29;14(1):74. doi: 10.3390/plants14010074.
, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.69 and 141.65, respectively. Pre-treatment with malathion reduced RF by 2.40× and 1.25× in R1 and R2, indicating the potential involvement of cytochrome P450 (CytP450). NBD-Cl pre-treatment decreased RF only in R2, suggesting possible GST involvement. Gene analysis revealed no mutations (at previously reported sites) or overexpression in the acetolactate synthase () gene. However, a significant difference in ALS enzyme activity between resistant and susceptible biotypes points to target-site resistance mechanisms. Studies with C-labeled pyroxsulam showed that reduced absorption and translocation were not likely resistance mechanisms. In summary, herbicide resistance in appears to result from multiple mechanisms. Possible causes include target-site resistance from an unidentified mutation (within coding or regulatory regions). Enhanced herbicide metabolism via CytP450s and GSTs is also a contributing factor. Further experimental validation is needed to confirm these mechanisms and fully understand the resistance. This evolution underscores the adaptive capacity of weed populations under herbicide pressure, emphasizing the need for alternative control strategies.
在捷克冬小麦田中普遍存在的杂草**[杂草名称未给出],由于频繁使用ALS抑制性除草剂,已对其产生了抗性。本研究报道了一种对唑啉磺草胺具有抗性的[杂草名称未给出]生物型,对碘磺隆、丙酯草醚、啶磺草胺和绿麦隆具有交叉抗性和多重抗性。剂量反应实验表明,R1和R2生物型对唑啉磺草胺均具有高抗性,抗性因子(RF)分别为6.69和141.65。用马拉硫磷预处理可使R1和R2中的RF分别降低2.40倍和1.25倍,表明细胞色素P450(CytP450)可能参与其中。用NBD-Cl预处理仅使R2中的RF降低,表明可能有谷胱甘肽S-转移酶(GST)参与。基因分析显示,乙酰乳酸合成酶(ALS)基因(在先前报道的位点)没有突变或过表达。然而,抗性和敏感生物型之间ALS酶活性的显著差异表明存在靶标位点抗性机制。用14C标记的唑啉磺草胺进行的研究表明,吸收和转运减少不太可能是抗性机制。总之,[杂草名称未给出]**中的除草剂抗性似乎是由多种机制导致的。可能的原因包括来自未鉴定的ALS突变(在编码或调控区域内)的靶标位点抗性。通过CytP450s和GSTs增强除草剂代谢也是一个促成因素。需要进一步的实验验证来确认这些机制并充分了解抗性。这种进化强调了杂草种群在除草剂压力下的适应能力,强调了需要替代控制策略。