Cabrerizo Marco J, Villafañe Virginia E, Helbling E Walter, Blum Ricarda, Vizzo Juan I, Gadda Alejandro, Valiñas Macarena S
Departamento de Ecología, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina.
Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
Mar Environ Res. 2025 Feb;204:106952. doi: 10.1016/j.marenvres.2025.106952. Epub 2025 Jan 7.
Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.2 to 0.6-0.8) and resource use efficiencies (from 9 to 1 μg chlorophyll a (Chl a) μmol nitrogen) and prompted uncoupling between microzooplankton grazing (m) and phytoplankton growth (μ) rates (μ > m). The altered trophic interaction could be due to enhanced intra-guild predation or to microzooplankton growing at suboptimal temperatures compared to their prey. Because phytoplankton-specific loss rates to consumers grazing are the most significant uncertainty in marine biogeochemical models, we stress the need for experimental approaches quantifying it accurately to avoid bias in predicting the impacts of global change on marine ecosystems.
浮游生物群落受到多种全球变化驱动因素的影响;然而,它们之间的相互作用如何偏离基于单驱动因素研究的预测尚不清楚,尤其是在明确考虑营养相互作用的情况下。我们研究了同时操纵温度、pH值、养分可用性和太阳辐射质量如何影响从浮游植物到食草性原生生物的碳转移及其对生态系统功能的潜在影响。我们的结果表明,多种相互作用的全球变化驱动因素降低了光合效率(总初级生产力与电子传输速率之比,从0.2降至0.6 - 0.8)和资源利用效率(从9降至1 μg叶绿素a(Chl a)/μmol氮),并促使微型浮游动物的摄食率(m)和浮游植物生长率(μ)之间出现解耦(μ > m)。营养相互作用的改变可能是由于 guild内捕食增加,或者是微型浮游动物与其猎物相比在非最适温度下生长。由于浮游植物被消费者摄食的特定损失率是海洋生物地球化学模型中最显著的不确定性因素,我们强调需要通过实验方法准确量化它,以避免在预测全球变化对海洋生态系统的影响时出现偏差。