Suppr超能文献

原子氢催化分子纳米石墨烯前驱体的环脱氢反应。

Cyclodehydrogenation of molecular nanographene precursors catalyzed by atomic hydrogen.

作者信息

Zuzak Rafal, Dabczynski Pawel, Castro-Esteban Jesús, Martínez José Ignacio, Engelund Mads, Pérez Dolores, Peña Diego, Godlewski Szymon

机构信息

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, PL 30-348, Krakow, Poland.

Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.

出版信息

Nat Commun. 2025 Jan 15;16(1):691. doi: 10.1038/s41467-024-54774-1.

Abstract

Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type. We demonstrate that, counterintuitively, atomic hydrogen can play the role of a catalyst in the cyclodehydrogenative planarization reaction. The high efficiency of the method is demonstrated by the nanographene synthesis on metallic Au, semiconducting TiO, Ge:H, as well as on inert and insulating Si/SiO and thin NaCl layers. The hydrogen-catalyzed cyclodehydrogenation reaction reported here leads towards the integration of graphene derivatives in optoelectronic devices as well as developing the field of on-surface synthesis by means of catalytic transformations. It also inspires merging of atomically shaped graphene-based nanostructures with low-dimensional inorganic units into functional devices.

摘要

在半导体和绝缘体上实现石墨烯纳米结构的原子精确合成一直是一项艰巨的挑战。特别是,催化环脱氢平面化反应所需的金属基底限制了后续利用石墨烯衍生物的电子和/或磁结构的应用。在此,我们介绍一种方案,其中表面反应的引发和进行与基底类型无关。我们证明,与直觉相反,原子氢可以在环脱氢平面化反应中起到催化剂的作用。该方法的高效性通过在金属Au、半导体TiO、Ge:H以及惰性和绝缘的Si/SiO和薄NaCl层上合成纳米石墨烯得到了证明。本文报道的氢催化环脱氢反应有助于将石墨烯衍生物集成到光电器件中,并通过催化转化发展表面合成领域。它还激发了将原子形状的石墨烯基纳米结构与低维无机单元合并成功能器件的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b6c/11735845/c107c1a2ecf9/41467_2024_54774_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验