Chen Lihan, Jiang Chenyu, Scholle Frank, Meo Alissa E, Ohata Jun, Gorman Christopher B, Ghiladi Reza A
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
School of Optical and Electronic Information, Suzhou City University, Suzhou, Jiangsu Province 215104, China.
ACS Appl Bio Mater. 2025 Feb 17;8(2):1138-1147. doi: 10.1021/acsabm.4c01467. Epub 2025 Jan 16.
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.2 nm), with light absorption across the entire visible spectrum (λ ∼550 nm). Under light excitation at 550 nm, the generation of singlet oxygen (O) was evidenced by its characteristic phosphorescence signal at 1278 nm, indicating successful energy transfer from the QDs to surface-anchored ACA ligands, in accordance with a type II mechanism for a photodynamically generated singlet oxygen. The InP/ZnSe/ZnS core/shell QDs were applied to cellulose via dip coating, and the resultant QDs-loaded material was assessed for antimicrobial photodynamic inactivation (aPDI) of both Gram-positive [methicillin-resistant (MRSA; ATCC-44), vancomycin-resistant (VRE; ATCC-2320)] and Gram-negative [multidrug-resistant (MDRAB; ATCC-1605), NDM-1 positive (KP; ATCC-2146)] bacteria under illumination (400-700 nm; 85 mW/cm; 90 min). The highest inactivation was observed for MRSA, achieving at least 99.999% inactivation (5 log units). Antiviral photodynamic inactivation on human coronavirus 229E (HCoV-229E) and feline calicivirus (FCV) demonstrated complete viral inactivation (to the detection limit). Cytotoxicity studies showed that the QDs are nontoxic to mammalian cells in the dark. Together, these results confirm the promising potential of ligand-functionalized InP-based QDs to be employed as nontoxic photosensitizers as materials in self-sterilizing surfaces.
基于配体功能化的磷化铟量子点(QDs)已被开发为一类创新的无毒光敏剂,适用于抗菌应用,旨在减少或防止病原体通过高接触表面从一个宿主传播到另一个宿主。采用热注射法,随后通过与9-蒽甲酸(ACA)进行配体交换功能化,得到了所需的核壳型InP/ZnSe/ZnS量子点。透射电子显微镜(TEM)显示这些量子点尺寸均匀(约3.2纳米),在整个可见光谱范围内有光吸收(波长约550纳米)。在550纳米的光激发下,单重态氧(O)的产生通过其在1278纳米处的特征磷光信号得到证实,这表明能量从量子点成功转移到表面锚定的ACA配体,符合光动力产生单重态氧的II型机制。通过浸涂将InP/ZnSe/ZnS核壳量子点应用于纤维素,并对所得负载量子点的材料进行评估,以检测其对革兰氏阳性菌[耐甲氧西林金黄色葡萄球菌(MRSA;ATCC-44)、耐万古霉素肠球菌(VRE;ATCC-2320)]和革兰氏阴性菌[多重耐药鲍曼不动杆菌(MDRAB;ATCC-1605)、NDM-1阳性肺炎克雷伯菌(KP;ATCC-2146)]在光照下(400-700纳米;85毫瓦/平方厘米;90分钟)的抗菌光动力失活(aPDI)情况。观察到对MRSA的失活率最高达到至少99.999%(5个对数单位)。对人冠状病毒229E(HCoV-229E)和猫杯状病毒(FCV)的抗病毒光动力失活显示病毒完全失活(至检测限)。细胞毒性研究表明,量子点在黑暗中对哺乳动物细胞无毒。总之,这些结果证实了配体功能化的基于InP的量子点作为无毒光敏剂在自消毒表面材料中的应用潜力巨大。