Suppr超能文献

急性冠状动脉综合征患者药物依从性的决定因素:一项随机临床试验的二次分析

Determinants of medication adherence in patients with acute coronary syndrome: a secondary analysis of a randomised clinical trial.

作者信息

Kha Richard, Min Haeri, Marschner Simone, Mahendran Shehane, Thiagalingam Aravinda, Poulter Rohan, Redfern Julie, Brieger David, Thompson Peter L, Hillis Graham S, Collins Nicholas, Shetty Pratap, McGrady Michele, Hamilton-Craig Christian, Kangaharan Nadarajah, Atherton John, Maiorana Andrew, Klimis Harry, Juergens Craig, Chow Clara K

机构信息

Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia

Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia.

出版信息

Heart. 2025 May 2;111(10):462-470. doi: 10.1136/heartjnl-2024-325144.

Abstract

BACKGROUND

Coronary heart disease (CHD) remains a leading cause of mortality and disability worldwide. Approximately half of the patients who have had a prior hospital admission for CHD will have a recurrent coronary event, with the majority of these occurring within 12 months. Despite well-established evidence-based therapies, medication non-adherence is highly prevalent and reasons for medication non-adherence are poorly understood. This study evaluates factors influencing adherence to secondary prevention medications in people with acute coronary syndrome (ACS).

METHODS

We performed a secondary analysis of TEXT messages to improve MEDication adherence and Secondary prevention after ACS (TEXTMEDS), a single-blind randomised clinical trial of 1424 patients with ACS from 18 hospitals across Australia. The primary outcome was self-reported medication adherence to each of up to five classes of guideline-recommended cardioprotective medications indicated for secondary prevention after ACS. Patients were followed up at 6-month and 12-month time points and were defined as adherent if at both time points, the proportion of indicated medications taken was >80% (>24/30 days in the preceding 1 month) for all five classes if not otherwise contraindicated. Logistic regression analysis and the Least Absolute Shrinkage and Selection Operator regularisation technique were used to assess the effect of sociodemographic and clinical factors on medication adherence.

RESULTS

The analyses included 1379 participants with complete adherence data (mean age 58.5±10.7 years; 1095 (79.4%) men). The following variables were associated with adherence to cardiovascular medications at both 6 and 12 months: greater number of total medications taken (OR: 1.33; 95% CI: 1.25 to 1.42) and attending a cardiac rehabilitation programme (1.47; 95% CI: 1.17 to 1.86). In contrast, female sex (0.67; 95% CI: 0.50 to 0.90) and physical disability (0.43; 95% CI: 0.23 to 0.77) were associated with lower likelihood of medication adherence.

CONCLUSIONS

Sociodemographic and clinical factors may influence medication adherence. Greater awareness, discussion and monitoring of these factors during patient follow-up may help improve medication adherence.

TRIAL REGISTRATION NUMBER

Australian New Zealand Clinical Trials Registry; URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364448; registration number: ACTRN12613000793718.

摘要

背景

冠心病(CHD)仍是全球死亡和残疾的主要原因。既往因冠心病住院的患者中,约有一半会发生复发性冠状动脉事件,其中大多数发生在12个月内。尽管有成熟的循证疗法,但药物治疗依从性差的情况非常普遍,且对药物治疗不依从的原因了解甚少。本研究评估影响急性冠状动脉综合征(ACS)患者二级预防药物依从性的因素。

方法

我们对“通过短信改善ACS后的药物依从性和二级预防”(TEXTMEDS)研究进行了二次分析,该研究是一项单盲随机临床试验,纳入了来自澳大利亚18家医院的1424例ACS患者。主要结局是自我报告的对多达五类指南推荐的用于ACS后二级预防的心脏保护药物的药物依从性。在6个月和12个月的时间点对患者进行随访,如果在两个时间点,对于所有五类药物(除非有其他禁忌),所服用的指定药物比例在前1个月中>80%(>24/30天),则定义为依从。采用逻辑回归分析和最小绝对收缩和选择算子正则化技术来评估社会人口统计学和临床因素对药物依从性的影响。

结果

分析纳入了1379名有完整依从性数据的参与者(平均年龄58.5±10.7岁;1095名(79.4%)男性)。以下变量与6个月和12个月时心血管药物的依从性相关:服用的药物总数较多(比值比:1.33;95%置信区间:1.25至1.42)以及参加心脏康复计划(1.47;95%置信区间:1.17至1.86)。相比之下,女性(0.67;95%置信区间:0.50至0.90)和身体残疾(0.43;95%置信区间:0.23至0.77)与药物依从性较低的可能性相关。

结论

社会人口统计学和临床因素可能影响药物依从性。在患者随访期间对这些因素提高认识、进行讨论和监测可能有助于提高药物依从性。

试验注册号

澳大利亚新西兰临床试验注册中心;网址:https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364448;注册号:ACTRN12613000793718。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验