Akiyama Ryota, Terami Daiki, Noda Aozora, Watanabe Bunta, Umemoto Naoyuki, Muranaka Toshiya, Saito Kazuki, Sugimoto Yukihiro, Mizutani Masaharu
Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
The Jikei University School of Medicine, 8-3-1 Kokuryo, Chohu, Tokyo, 182-8570, Japan.
New Phytol. 2025 Mar;245(6):2632-2644. doi: 10.1111/nph.20411. Epub 2025 Jan 17.
Steroidal glycoalkaloids (SGAs) are specialized metabolites primarily produced by Solanaceae plants such as potatoes and tomatoes. Notably, α-solanine and α-chaconine are recognized as toxic substances in potatoes. While the biosynthetic pathways of SGAs are largely understood, the final steps of α-solanine and α-chaconine biosynthesis remained elusive. In this study, we discovered that two reductase-encoding genes, reductase for potato glycoalkaloid biosynthesis 1 (RPG1) and RPG2, complete SGA biosynthesis in potato. Knockout of both RPG1 and RPG2 in potato hairy roots halted α-solanine production, leading to the accumulation of zwittersolanine. We analyzed the catalytic function of recombinant enzymes and conducted structural determination of the reaction products by nuclear magnetic resonance. As a result, RPG1 converted zwittersolanine to 16-iminiumsolanine, and RPG2 further converted it to α-solanine. RPG2 also transformed zwittersolanine to 22-iminiumsolanine, which RPG1 then converted to α-solanine. Similar processes were observed for α-chaconine synthesis from zwitterchaconine. Due to differences in enzymatic reaction efficiency, the biosynthetic pathway via 16-iminiumsolanine/16-iminiumchaconine was suggested to be predominant in potato. Our results could pave the way for tailoring SGA structures within Solanum plants, enabling the development of Solanum crop varieties with reduced toxicity or enhanced resistance to diseases and pests.
甾体糖生物碱(SGAs)是主要由茄科植物如马铃薯和番茄产生的特殊代谢产物。值得注意的是,α-茄碱和α-查茄碱被认为是马铃薯中的有毒物质。虽然SGAs的生物合成途径已基本清楚,但α-茄碱和α-查茄碱生物合成的最后步骤仍不清楚。在本研究中,我们发现两个编码还原酶的基因,马铃薯糖生物碱生物合成还原酶1(RPG1)和RPG2,完成了马铃薯中SGAs的生物合成。马铃薯毛状根中RPG1和RPG2的敲除阻止了α-茄碱的产生,导致两性离子茄碱的积累。我们分析了重组酶的催化功能,并通过核磁共振对反应产物进行了结构测定。结果表明,RPG1将两性离子茄碱转化为16-亚胺基茄碱,RPG2进一步将其转化为α-茄碱。RPG2还将两性离子茄碱转化为22-亚胺基茄碱,然后RPG1将其转化为α-茄碱。从两性离子查茄碱合成α-查茄碱时也观察到类似的过程。由于酶促反应效率的差异,推测通过16-亚胺基茄碱/16-亚胺基查茄碱的生物合成途径在马铃薯中占主导地位。我们的结果可为茄属植物中SGAs结构的定制铺平道路,从而培育出毒性降低或抗病虫能力增强的茄属作物品种。