Ortigas-Vásquez Ariana, Taylor William R, Postolka Barbara, Schütz Pascal, Maas Allan, Woiczinski Matthias, Grupp Thomas M, Sauer Adrian
Research and Development, Aesculap AG, Tuttlingen, Germany.
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
Sci Rep. 2025 Jan 17;15(1):2276. doi: 10.1038/s41598-025-86137-1.
In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation. Consequently, for consistent interpretation of joint motion (especially direct comparison) to be possible, differences in local frame position and orientation must first be addressed. Here, building on previous work that introduced a frame orientation optimisation method and demonstrated its potential to induce convergence towards a consistent kinematic signal, we present the REference FRame Alignment MEthod (REFRAME) that addresses both rotational and translational kinematics, is validated here for a healthy tibiofemoral joint, and allows flexible selection of optimisation criteria to fittingly address specific research questions. While not claiming to improve the accuracy of joint kinematics or reference frame axes, REFRAME does enable a representation of knee kinematic signals that accounts for differences in local frames (regardless of how these differences were introduced, e.g. anatomical heterogeneity, use of different data capture modalities or joint axis approaches, intra- and inter-rater reliability, etc.), as evidenced by peak root-mean-square errors of 0.24° ± 0.17° and 0.03 mm ± 0.01 mm after its implementation. By using a self-contained optimisation approach to systematically re-align the position and orientation of reference frames, REFRAME allows researchers to better assess whether two kinematic signals represent fundamentally similar or different underlying knee motion. The openly available implementation of REFRAME could therefore allow the consistent interpretation and comparison of knee kinematic signals across trials, subjects, examiners, or even research institutes.
在临床运动生物力学中,收集运动学测量数据以表征关节的运动,并研究不同因素如何影响运动模式。计算代表性的时间序列信号以简洁地概括(复杂且多维的)运动学数据集。由于始终一致地定义关节坐标系存在诸多困难,局部坐标系的方向和位置对所得运动学信号特征的影响先前已被证明是一个主要限制。因此,为了能够对关节运动进行一致的解释(尤其是直接比较),必须首先解决局部坐标系位置和方向的差异。在此,基于先前引入坐标系方向优化方法并证明其促使收敛到一致运动学信号的潜力的工作,我们提出了参考坐标系对齐方法(REFRAME),该方法同时处理旋转和平移运动学,在此针对健康的胫股关节进行了验证,并允许灵活选择优化标准以恰当地解决特定的研究问题。虽然REFRAME并不声称能提高关节运动学或参考坐标轴的准确性,但它确实能够表示考虑了局部坐标系差异的膝关节运动学信号(无论这些差异是如何产生的,例如解剖学异质性、使用不同的数据采集方式或关节轴方法、评估者内部和评估者之间的可靠性等),实施后峰值均方根误差为0.24°±0.17°和0.03 mm±0.01 mm即可证明。通过使用一种独立的优化方法来系统地重新对齐参考坐标系的位置和方向,REFRAME使研究人员能够更好地评估两个运动学信号是否代表根本相似或不同的潜在膝关节运动。因此,REFRAME的公开可用实现方式可以允许在不同试验、受试者、检查人员甚至研究机构之间对膝关节运动学信号进行一致的解释和比较。