Verbel-Olarte Martha I, Serna-Galvis Efraím A, Jimenez-Lopez David M, Jojoa-Sierra Sindy D, Porras Jazmín, Pulgarin Cesar, Torres-Palma Ricardo A
Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Sci Total Environ. 2025 Feb 1;963:178442. doi: 10.1016/j.scitotenv.2025.178442. Epub 2025 Jan 20.
For the first time, using a chemical pollutant (an antibiotic) as a photosensitizer to improve the elimination of a microbiological contaminant of emerging concern (antibiotic-resistant bacteria) is presented. The effect of ciprofloxacin (CIP) on the inactivation of three light-promoted antibiotic-resistant bacteria (ARB) was evaluated. Ciprofloxacin-resistant Escherichia coli, ciprofloxacin-resistant Staphylococcus aureus, and carbapenem-resistant Klebsiella pneumoniae. Firstly, the photosensitizing effect of CIP on E. coli inactivation was studied. Irradiated CIP (1 ppm) induced superoxide anion radical formation (confirmed through EPR analyses), and the combination of these reactive oxygen species (ROS) with ongoing solar radiation exposure enhanced bacterial inactivation. CIP enhanced the disinfection of antibiotic-resistant E. coli (by 1.84 log units at 120 min of irradiation) and improved the inactivation of K. pneumoniae (by 3.48 log units at 135 min)-both Gram-negative bacteria. Conversely, the photo-inactivation of the Gram-positive bacteria S. aureus did not significantly change (just a slight reduction of 0.42 log units at 120 min) by the presence of CIP. Showing the bacterial structure influences the disinfection process. Another critical factor was antibiotic concentration. A high CIP concentration (10 ppm) induced an interfering screen effect, while a low concentration promoted bacteria inactivation via photosensitization (in Gram-negative bacteria). Interestingly, no photosensitizing effect was observed when CIP was replaced by levofloxacin (LEV, another fluoroquinolone antibiotic), indicating a strong dependence on antibiotic structure. Additionally, the effect of the light source on photosensitized inactivation was evaluated, substituting sunlight with UVC irradiation. Under UVC light, CIP worsened ARB photo-inactivation, suggesting disinfection was mainly due to direct light action on microorganisms rather than photosensitization. Finally, the influence of water components on sunlight-photosensitized disinfection was examined using simulated urine and freshwater. The ARB inactivation decreased as matrix complexity increased. Thus, the effectiveness order was Milli-Q water > freshwater > urine.
首次提出使用化学污染物(一种抗生素)作为光敏剂来提高对一种新出现的微生物污染物(抗生素抗性细菌)的清除效果。评估了环丙沙星(CIP)对三种光促进抗生素抗性细菌(ARB)的灭活作用。耐环丙沙星的大肠杆菌、耐环丙沙星的金黄色葡萄球菌和耐碳青霉烯类的肺炎克雷伯菌。首先,研究了CIP对大肠杆菌灭活的光敏作用。辐照的CIP(1 ppm)诱导超氧阴离子自由基的形成(通过电子顺磁共振分析证实),并且这些活性氧(ROS)与持续的太阳辐射暴露相结合增强了细菌的灭活。CIP增强了对抗生素抗性大肠杆菌的消毒效果(在辐照120分钟时增加1.84个对数单位),并改善了肺炎克雷伯菌的灭活效果(在辐照135分钟时增加3.48个对数单位)——这两种都是革兰氏阴性菌。相反,金黄色葡萄球菌这种革兰氏阳性菌的光灭活在CIP存在的情况下没有显著变化(在120分钟时仅轻微降低0.42个对数单位)。这表明细菌结构会影响消毒过程。另一个关键因素是抗生素浓度。高浓度的CIP(10 ppm)会产生干扰屏蔽效应,而低浓度则通过光敏作用促进细菌灭活(在革兰氏阴性菌中)。有趣的是,当用左氧氟沙星(LEV,另一种氟喹诺酮类抗生素)替代CIP时,未观察到光敏作用,这表明对抗生素结构有很强的依赖性。此外,评估了光源对光敏灭活的影响,用紫外线C(UVC)辐照替代阳光。在UVC光下,CIP使ARB的光灭活变差,这表明消毒主要是由于光对微生物的直接作用而非光敏作用。最后,使用模拟尿液和淡水研究了水成分对阳光光敏消毒的影响。随着基质复杂性的增加,ARB的灭活效果降低。因此,有效性顺序为超纯水>淡水>尿液。