Suppr超能文献

利用深度学习进行心理健康监测中的稳健脑电图分析。

Leveraging deep learning for robust EEG analysis in mental health monitoring.

作者信息

Liu Zixiang, Zhao Juan

机构信息

Anhui Vocational College of Grain Engineering, Hefei, China.

Hefei University, Hefei, China.

出版信息

Front Neuroinform. 2025 Jan 3;18:1494970. doi: 10.3389/fninf.2024.1494970. eCollection 2024.

Abstract

INTRODUCTION

Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios.

METHODS

To overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals.

RESULTS AND DISCUSSION

Our empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.

摘要

引言

利用脑电图(EEG)分析进行心理健康监测因其非侵入性特点以及EEG信号中编码的丰富时间信息而备受关注,这些信息可指示认知和情绪状况。基于EEG的心理健康评估的传统方法通常依赖于人工构建的特征或基本的机器学习方法,如支持向量分类器或浅层神经网络。尽管这些方法具有潜力,但它们在捕捉EEG数据中复杂的时空关系方面往往存在不足,导致分类准确率较低,并且在不同人群和心理健康场景中的适应性较差。

方法

为了克服这些限制,我们引入了EEG Mind-Transformer,这是一种创新的深度学习架构,由动态时间图注意力机制(DT-GAM)、层次图表示与分析(HGRA)模块和时空融合模块(STFM)组成。DT-GAM旨在动态提取EEG数据中的时间依赖性,而HGRA对大脑的层次结构进行建模,以捕捉不同脑区之间的局部和全局相互作用。STFM合成空间和时间元素,生成EEG信号的综合表示。

结果与讨论

我们的实证结果证实,EEG Mind-Transformer显著优于传统方法,在多个数据集上实现了92.5%的准确率、91.3%的召回率、90.8%的F1分数和94.2%的AUC。这些发现突出了该模型的稳健性及其对各种心理健康状况的通用性。此外,EEG Mind-Transformer不仅突破了基于EEG的心理健康监测的现有技术水平,还为与精神障碍相关的潜在脑功能提供了有意义的见解,巩固了其在研究和临床环境中的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb4/11739345/6f9d13983bd3/fninf-18-1494970-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验