Amyar Amine, Nakamori Shiro, Morales Manuel, Yoon Siyeop, Rodriguez Jennifer, Kim Jiwon, Judd Robert M, Weinsaft Jonathan W, Nezafat Reza
Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
Division of Cardiology, Weill Cornell Medicine, New York, NY, USA.
Med Image Comput Comput Assist Interv. 2023 Oct;14221:639-648. doi: 10.1007/978-3-031-43895-0_60. Epub 2023 Oct 1.
Gadolinium-based contrast agents are commonly used in cardiac magnetic resonance (CMR) imaging to characterize myocardial scar tissue. Recent works using deep learning have shown the promise of contrast-free short-axis cine images to detect scars based on wall motion abnormalities (WMA) in ischemic patients. However, WMA can occur in patients without a scar. Moreover, the presence of a scar may not always be accompanied by WMA, particularly in non-ischemic heart disease, posing a significant challenge in detecting scars in such cases. To overcome this limitation, we propose a novel deep spatiotemporal residual attention network (ST-RAN) that leverages temporal and spatial information at different scales to detect scars in both ischemic and non-ischemic heart diseases. Our model comprises three primary components. First, we develop a novel factorized 4D (3D+time) convolutional layer that extracts 3D spatial features of the heart and a deep 1D kernel in the temporal direction to extract heart motion. Secondly, we enhance the power of the 4D (3D+time) layer with spatiotemporal attention to extract rich whole-heart features while tracking the long-range temporal relationship between the frames. Lastly, we introduce a residual attention block that extracts spatial and temporal features at different scales to obtain global and local motion features and to detect subtle changes in contrast related to scar. We train and validate our model on a large dataset of 3000 patients who underwent clinical CMR with various indications and different field strengths (1.5T, 3T) from multiple vendors (GE, Siemens) to demonstrate the generalizability and robustness of our model. We show that our model works on both ischemic and non-ischemic heart diseases outperforming state-of-the-art methods. Our code is available at https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection.
基于钆的造影剂常用于心脏磁共振(CMR)成像,以表征心肌瘢痕组织。最近利用深度学习的研究表明,无造影剂短轴电影图像有望基于缺血性患者的壁运动异常(WMA)来检测瘢痕。然而,WMA也可能出现在没有瘢痕的患者中。此外,瘢痕的存在并不总是伴有WMA,特别是在非缺血性心脏病中,这给在这种情况下检测瘢痕带来了重大挑战。为了克服这一局限性,我们提出了一种新颖的深度时空残差注意力网络(ST-RAN),该网络利用不同尺度的时空信息来检测缺血性和非缺血性心脏病中的瘢痕。我们的模型包括三个主要组件。首先,我们开发了一种新颖的分解4D(3D+时间)卷积层,该层提取心脏的3D空间特征,并在时间方向上提取深度1D内核以提取心脏运动。其次,我们通过时空注意力增强4D(3D+时间)层的能力,以提取丰富的全心特征,同时跟踪帧之间的长程时间关系。最后,我们引入了一个残差注意力块,该块在不同尺度上提取空间和时间特征,以获得全局和局部运动特征,并检测与瘢痕相关的对比度细微变化。我们在一个由3000名患者组成的大型数据集上训练和验证我们的模型,这些患者来自多个供应商(GE、西门子),接受了具有各种适应症和不同场强(1.5T、3T)的临床CMR检查,以证明我们模型的通用性和鲁棒性。我们表明,我们的模型在缺血性和非缺血性心脏病中均有效,性能优于现有方法。我们的代码可在https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection获取。