Suppr超能文献

在蝾螈脊髓的脉冲神经机械模型中,平衡中枢控制和感觉反馈可产生适应性强且稳健的运动模式。

Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord.

作者信息

Pazzaglia Alessandro, Bicanski Andrej, Ferrario Andrea, Arreguit Jonathan, Ryczko Dimitri, Ijspeert Auke

机构信息

Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Neural Computation Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

PLoS Comput Biol. 2025 Jan 21;21(1):e1012101. doi: 10.1371/journal.pcbi.1012101. eCollection 2025 Jan.

Abstract

This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles. In open-loop simulations (i.e., without sensory feedback), the model replicates locomotor patterns observed in-vitro and in-vivo for swimming and trotting gaits. Additionally, a modular descending reticulospinal drive to the central pattern generation network allows to accurately control the activation, frequency and phase relationship of the different sections of the limb and axial circuits. In closed-loop swimming simulations (i.e. including axial stretch feedback), systematic evaluations reveal that intermediate values of feedback strength increase the tail beat frequency and reduce the intersegmental phase lag, contributing to a more coordinated, faster and energy-efficient locomotion. Interestingly, the result is conserved across different feedback topologies (ascending or descending, excitatory or inhibitory), suggesting that it may be an inherent property of axial proprioception. Moreover, intermediate feedback strengths expand the stability region of the network, enhancing its tolerance to a wider range of descending drives, internal parameters' modifications and noise levels. Conversely, high values of feedback strength lead to a loss of controllability of the network and a degradation of its locomotor performance. Overall, this study highlights the beneficial role of proprioception in generating, modulating and stabilizing locomotion patterns, provided that it does not excessively override centrally-generated locomotor rhythms. This work also underscores the critical role of detailed, biologically-realistic neural networks to improve our understanding of vertebrate locomotion.

摘要

本研究引入了一种新颖的神经力学模型,该模型采用详细的脉冲神经网络来探究轴向本体感觉反馈,即伸展反馈,在蝾螈运动中的作用。与以往常常过度简化运动网络动力学的研究不同,我们的模型对被认为负责生成运动模式的神经元类别进行了详细模拟。运动回路被建模为自适应漏电积分发放神经元的脉冲神经网络,与具有实际物理参数和模拟肌肉的蝾螈三维力学模型相耦合。在开环模拟(即无感觉反馈)中,该模型复制了在体外和体内观察到的游泳和小跑步态的运动模式。此外,对中央模式生成网络的模块化下行网状脊髓驱动能够精确控制肢体和轴向回路不同部分的激活、频率和相位关系。在闭环游泳模拟(即包括轴向伸展反馈)中,系统评估表明,反馈强度的中间值会增加尾鳍摆动频率并减少节段间相位滞后,有助于实现更协调、更快且节能的运动。有趣的是,这一结果在不同的反馈拓扑结构(上行或下行、兴奋性或抑制性)中都保持不变,表明这可能是轴向本体感觉的固有属性。此外,中间反馈强度扩大了网络的稳定区域,增强了其对更广泛的下行驱动、内部参数修改和噪声水平的耐受性。相反,高反馈强度值会导致网络失去可控性并使其运动性能下降。总体而言,本研究强调了本体感觉在生成、调节和稳定运动模式中的有益作用,前提是它不会过度凌驾于中枢产生的运动节律之上。这项工作还强调了详细的、生物学上真实的神经网络对于增进我们对脊椎动物运动理解的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9803/11771899/d6bc944c62ea/pcbi.1012101.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验