Suppr超能文献

用于眼科诊断的基础模型的分布式训练。

Distributed training of foundation models for ophthalmic diagnosis.

作者信息

Gholami Sina, Jannat Fatema-E, Thompson Atalie Carina, Ong Sally Shin Yee, Lim Jennifer I, Leng Theodore, Tabkhivayghan Hamed, Alam Minhaj Nur

机构信息

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA.

Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Commun Eng. 2025 Jan 22;4(1):6. doi: 10.1038/s44172-025-00341-5.

Abstract

Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images. We employed a self-supervised, mask-based pre-training strategy to develop a robust foundation encoder. This encoder was trained on seven optical coherence tomography datasets, and we compared its performance under local, centralized, and federated learning settings. Our results show that self-supervised methods-both centralized and federated-improved the area under the curve by at least 10% compared to local models. Additionally, incorporating domain adaptation into the federated learning framework further boosted performance and generalization across different populations and imaging conditions. This approach supports collaborative model development without data sharing, providing a scalable, privacy-preserving solution for effective retinal disease screening and diagnosis in diverse clinical settings.

摘要

视力障碍影响着全球近22亿人,其中近一半的病例可通过早期诊断和干预得以预防,这凸显了对糖尿病视网膜病变和年龄相关性黄斑变性等病症采用可靠且可扩展的检测方法的迫切需求。在此,我们提出了一种分布式深度学习框架,该框架整合了自监督和域自适应联邦学习,以增强从光学相干断层扫描图像中检测眼部疾病的能力。我们采用了基于掩码的自监督预训练策略来开发一个强大的基础编码器。该编码器在七个光学相干断层扫描数据集上进行了训练,并且我们比较了其在局部、集中式和联邦学习设置下的性能。我们的结果表明,与局部模型相比,自监督方法(无论是集中式还是联邦式)均将曲线下面积提高了至少10%。此外,将域自适应纳入联邦学习框架进一步提升了性能以及在不同人群和成像条件下的泛化能力。这种方法支持在不共享数据的情况下进行协作式模型开发,为在各种临床环境中进行有效的视网膜疾病筛查和诊断提供了一种可扩展的、保护隐私的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/4f8732219cec/44172_2025_341_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验