文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Distributed training of foundation models for ophthalmic diagnosis.

作者信息

Gholami Sina, Jannat Fatema-E, Thompson Atalie Carina, Ong Sally Shin Yee, Lim Jennifer I, Leng Theodore, Tabkhivayghan Hamed, Alam Minhaj Nur

机构信息

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA.

Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Commun Eng. 2025 Jan 22;4(1):6. doi: 10.1038/s44172-025-00341-5.


DOI:10.1038/s44172-025-00341-5
PMID:39843622
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11754456/
Abstract

Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images. We employed a self-supervised, mask-based pre-training strategy to develop a robust foundation encoder. This encoder was trained on seven optical coherence tomography datasets, and we compared its performance under local, centralized, and federated learning settings. Our results show that self-supervised methods-both centralized and federated-improved the area under the curve by at least 10% compared to local models. Additionally, incorporating domain adaptation into the federated learning framework further boosted performance and generalization across different populations and imaging conditions. This approach supports collaborative model development without data sharing, providing a scalable, privacy-preserving solution for effective retinal disease screening and diagnosis in diverse clinical settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/08ea3daf1464/44172_2025_341_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/4f8732219cec/44172_2025_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/58046015e67e/44172_2025_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/f0815954aa20/44172_2025_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/a23076df1df8/44172_2025_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/e00a965fb5e2/44172_2025_341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/7efed4f0b1f0/44172_2025_341_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/08ea3daf1464/44172_2025_341_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/4f8732219cec/44172_2025_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/58046015e67e/44172_2025_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/f0815954aa20/44172_2025_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/a23076df1df8/44172_2025_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/e00a965fb5e2/44172_2025_341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/7efed4f0b1f0/44172_2025_341_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819e/11754456/08ea3daf1464/44172_2025_341_Fig7_HTML.jpg

相似文献

[1]
Distributed training of foundation models for ophthalmic diagnosis.

Commun Eng. 2025-1-22

[2]
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.

Ophthalmol Glaucoma. 2025

[3]
CAFES: Chest X-ray Analysis using Federated Self-supervised Learning for Pediatric COVID-19 Detection.

Proc SPIE Int Soc Opt Eng. 2024-2

[4]
Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.

J Imaging Inform Med. 2024-8

[5]
Privacy-Preserving Technology Using Federated Learning and Blockchain in Protecting against Adversarial Attacks for Retinal Imaging.

Ophthalmology. 2025-4

[6]
Privacy-preserving federated learning for collaborative medical data mining in multi-institutional settings.

Sci Rep. 2025-4-11

[7]
A scalable federated learning solution for secondary care using low-cost microcomputing: privacy-preserving development and evaluation of a COVID-19 screening test in UK hospitals.

Lancet Digit Health. 2024-2

[8]
Federated Learning Framework for Brain Tumor Detection Using MRI Images in Non-IID Data Distributions.

J Imaging Inform Med. 2025-3-24

[9]
Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data.

Ophthalmol Sci. 2021-10-8

[10]
Federated learning for computational pathology on gigapixel whole slide images.

Med Image Anal. 2022-2

引用本文的文献

[1]
Compact Vision-Language Models Enable Efficient and Interpretable Automated OCT Analysis Through Layer Specific Multimodal Learning.

bioRxiv. 2025-8-11

本文引用的文献

[1]
A Foundation Language-Image Model of the Retina (FLAIR): encoding expert knowledge in text supervision.

Med Image Anal. 2025-1

[2]
Uni4Eye++: A General Masked Image Modeling Multi-Modal Pre-Training Framework for Ophthalmic Image Classification and Segmentation.

IEEE Trans Med Imaging. 2024-12

[3]
OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods.

Sci Data. 2024-4-11

[4]
OCTA-500: A retinal dataset for optical coherence tomography angiography study.

Med Image Anal. 2024-4

[5]
Wavelet scattering transform application in classification of retinal abnormalities using OCT images.

Sci Rep. 2023-11-3

[6]
Federated learning for diagnosis of age-related macular degeneration.

Front Med (Lausanne). 2023-10-12

[7]
A foundation model for generalizable disease detection from retinal images.

Nature. 2023-10

[8]
Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review.

J Imaging. 2023-4-18

[9]
Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.

Sci Rep. 2023-4-13

[10]
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives.

Med Image Anal. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索