Suppr超能文献

一种基于三维卷积神经网络的土壤石油烃污染空间插值方法。

A spatial interpolation method based on 3D-CNN for soil petroleum hydrocarbon pollution.

作者信息

Miao Sheng, Ni Guoqing, Kong Guangze, Yuan Xiuhe, Liu Chao, Shen Xiang, Gao Weijun

机构信息

School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China.

School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, China.

出版信息

PLoS One. 2025 Jan 24;20(1):e0316940. doi: 10.1371/journal.pone.0316940. eCollection 2025.

Abstract

Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data. This study explores the application of Three-Dimensional Convolutional Neural Networks (3DCNN) in spatial interpolation to evaluate soil pollution. By introducing Channel Attention Mechanism (CAM), the model assigns different weights to auxiliary variables, improving the prediction accuracy of soil hydrocarbon content. We collected soil pollution data and validated the spatial distribution map generated using this method based on the drilling dataset. The results indicate that compared with traditional Kriging3D methods (R2 = 0.318) and other machine learning methods such as support vector regression (R2 = 0.582), the proposed 3DCNN based method can achieve better accuracy (R2 = 0.954). This approach provides a sustainable tool for soil pollution management, supports decision-makers in developing effective remediation strategies, and promotes the sustainable development of spatial interpolation techniques in environmental science.

摘要

石油烃污染对土壤造成了严重破坏,因此准确预测和早期干预对于可持续土壤管理至关重要。然而,传统的土壤分析方法通常依赖统计方法,这意味着它们总是依赖特定假设,并且对异常值敏感。现有的基于机器学习的方法将包含空间信息的特征转换为一维向量,导致数据的一些空间特征丢失。本研究探索三维卷积神经网络(3DCNN)在空间插值中用于评估土壤污染的应用。通过引入通道注意力机制(CAM),该模型为辅助变量分配不同权重,提高了土壤烃含量的预测精度。我们收集了土壤污染数据,并基于钻探数据集验证了使用该方法生成的空间分布图。结果表明,与传统的三维克里金法(R2 = 0.318)和其他机器学习方法如支持向量回归(R2 = 0.582)相比,所提出的基于3DCNN的方法能够实现更高的精度(R2 = 0.954)。这种方法为土壤污染管理提供了一种可持续工具,支持决策者制定有效的修复策略,并促进环境科学中空间插值技术的可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/11759995/833be8327680/pone.0316940.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验