Suppr超能文献

用于跨广泛pH环境的可植入生物电子器件的液基封装。

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

作者信息

Sun He, Xue Xiaoting, Robilotto Gabriella L, Zhang Xincheng, Son ChangHee, Chen Xingchi, Cao Yue, Nan Kewang, Yang Yiyuan, Fennell Gavin, Jung Jaewook, Song Yang, Li Huijie, Lu Shao-Hao, Liu Yizhou, Li Yi, Zhang Weiyi, He Jie, Wang Xueju, Li Yan, Mickle Aaron D, Zhang Yi

机构信息

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32603, USA.

出版信息

Nat Commun. 2025 Jan 25;16(1):1019. doi: 10.1038/s41467-025-55992-x.

Abstract

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range. In this work, we report a liquid-based encapsulation approach for bioelectronics under extreme pH environments. This approach achieves high optical transparency, stretchability, and mechanical durability. When applied to implantable wireless optoelectronic devices, our encapsulation method demonstrates outstanding water resistance in vitro, ranging from extremely acidic environments (pH = 1.5 and 4.5) to alkaline conditions (pH = 9). We also demonstrate the in vivo biocompatibility of our encapsulation approach and show that encapsulated wireless optoelectronics maintain robust operation throughout 3 months of implantation in freely moving mice. These results indicate that our encapsulation strategy has the potential to protect implantable bioelectronic devices in a wide range of research and clinical applications.

摘要

能够在广泛的pH范围内与高度移动的器官和组织长时间连接的可穿戴和植入式生物电子设备,将在基础生物医学研究和临床医学的各种应用中发挥作用。然而,这些系统的封装是一个重大挑战,因为此类设备需要在具有挑战性的pH环境中具备卓越的防水和防离子渗透性能,同时还要保持柔韧性和拉伸性,以匹配周围组织的物理特性。目前的封装材料通常局限于近中性pH条件,限制了它们的应用范围。在这项工作中,我们报道了一种在极端pH环境下用于生物电子设备的基于液体的封装方法。这种方法实现了高光学透明度、拉伸性和机械耐久性。当应用于植入式无线光电器件时,我们的封装方法在体外展示出出色的防水性能,涵盖从极端酸性环境(pH = 1.5和4.5)到碱性条件(pH = 9)的范围。我们还证明了我们的封装方法在体内的生物相容性,并表明封装的无线光电器件在自由活动的小鼠体内植入3个月期间保持稳定运行。这些结果表明,我们的封装策略有潜力在广泛的研究和临床应用中保护植入式生物电子设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32c3/11762702/a9513c402236/41467_2025_55992_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验