Suppr超能文献

时光机:对于长期预测而言,一个时间序列价值等同于四条曼巴蛇。 (注:这里的“曼巴蛇”在该语境下可能是一种有特定指代或比喻含义的事物,从纯字面翻译就是这样,但不太明确其确切所指的具体意义。)

TimeMachine: A Time Series is Worth 4 Mambas for Long-Term Forecasting.

作者信息

Ahamed Md Atik, Cheng Qiang

机构信息

Department of Computer Science, University of Kentucky.

Institute for Biomedical Informatics, University of Kentucky.

出版信息

ECAI 2024 (2024). 2024;392:1688-1695. doi: 10.3233/faia240677.

Abstract

Long-term time-series forecasting remains challenging due to the difficulty in capturing long-term dependencies, achieving linear scalability, and maintaining computational efficiency. We introduce TimeMachine, an innovative model that leverages Mamba, a state-space model, to capture long-term dependencies in multivariate time series data while maintaining linear scalability and small memory footprints. TimeMachine exploits the unique properties of time series data to produce salient contextual cues at multi-scales and leverage an innovative integrated quadruple-Mamba architecture to unify the handling of channel-mixing and channel-independence situations, thus enabling effective selection of contents for prediction against global and local contexts at different scales. Experimentally, TimeMachine achieves superior performance in prediction accuracy, scalability, and memory efficiency, as extensively validated using benchmark datasets.

摘要

由于难以捕捉长期依赖性、实现线性可扩展性以及保持计算效率,长期时间序列预测仍然具有挑战性。我们引入了TimeMachine,这是一种创新模型,它利用状态空间模型Mamba来捕捉多元时间序列数据中的长期依赖性,同时保持线性可扩展性和小内存占用。TimeMachine利用时间序列数据的独特属性在多尺度上产生显著的上下文线索,并利用创新的集成四重Mamba架构来统一处理通道混合和通道独立情况,从而能够针对不同尺度的全局和局部上下文有效地选择用于预测的内容。通过实验,TimeMachine在预测准确性、可扩展性和内存效率方面取得了卓越的性能,这在使用基准数据集进行的广泛验证中得到了证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48b/11767608/ab5d7d6076c3/nihms-2048807-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验