Suppr超能文献

计算机漏洞智能分类与网络安全管理系统:结合忆阻器神经网络与改进的TCNN模型

Intelligent classification of computer vulnerabilities and network security management system: Combining memristor neural network and improved TCNN model.

作者信息

Liu Zhenhui

机构信息

School of Information and Communication Engineering, Beijing University of Information Science and Technology, Bei Jing City, China.

Aviation Industry Information Center, Bei Jing City, China.

出版信息

PLoS One. 2025 Jan 27;20(1):e0318075. doi: 10.1371/journal.pone.0318075. eCollection 2025.

Abstract

To enhance the intelligent classification of computer vulnerabilities and improve the efficiency and accuracy of network security management, this study delves into the application of a comprehensive classification system that integrates the Memristor Neural Network (MNN) and an improved Temporal Convolutional Neural Network (TCNN) in network security management. This system not only focuses on the precise classification of vulnerability data but also emphasizes its core role in strengthening the network security management framework. Firstly, the study designs and implements a neural network model based on memristors. The MNN, by simulating the memory effect of biological neurons, effectively captures the complex nonlinear relationships within vulnerability data, thereby enhancing the data insight capabilities of the network security management system. Subsequently, structural optimization and parameter adjustments are made to the TCNN model, incorporating residual connections and attention mechanisms to improve its classification performance, making it more adaptable to the dynamically changing network security environment. Through data preprocessing, feature extraction, and model training, this study conducts experimental validation on a public vulnerability dataset. The experimental results indicate that: The MNN model demonstrates excellent performance across evaluation metrics such as Accuracy (ACC), Precision (P), Recall (R), and F1 Score, achieving an ACC of 89.5%, P of 90.2%, R of 88.7%, and F1 of 89.4%. The improved TCNN model shows even more outstanding performance on the aforementioned evaluation metrics. After structural optimization and parameter adjustments, the TCNN model's ACC increases to 93.8%, significantly higher than the MNN model. The P value also improves, reaching 91.5%, indicating enhanced capability in reducing false positives and improving vulnerability identification accuracy. The integrated classification system, leveraging the strengths of both the MNN and improved TCNN models, achieves an ACC of 95.2%. This improvement not only demonstrates the system's superior capability in accurately classifying vulnerability data but also proves the synergistic effect of MNN and TCNN models in addressing complex network security environments. The comprehensive classification system proposed in this study significantly enhances the classification performance of computer vulnerabilities, providing robust technical support for network security management. The system exhibits higher accuracy and stability in handling complex vulnerability datasets, making it highly valuable for practical applications and research.

摘要

为了增强计算机漏洞的智能分类,提高网络安全管理的效率和准确性,本研究深入探讨了一种综合分类系统在网络安全管理中的应用,该系统集成了忆阻器神经网络(MNN)和改进的时间卷积神经网络(TCNN)。该系统不仅专注于漏洞数据的精确分类,还强调其在强化网络安全管理框架中的核心作用。首先,研究设计并实现了一种基于忆阻器的神经网络模型。MNN通过模拟生物神经元的记忆效应,有效捕捉漏洞数据中的复杂非线性关系,从而增强网络安全管理系统的数据洞察能力。随后,对TCNN模型进行结构优化和参数调整,融入残差连接和注意力机制以提高其分类性能,使其更适应动态变化的网络安全环境。通过数据预处理、特征提取和模型训练,本研究在一个公共漏洞数据集上进行了实验验证。实验结果表明:MNN模型在准确率(ACC)、精确率(P)、召回率(R)和F1分数等评估指标上表现出色,ACC达到89.5%,P为90.2%,R为88.7%,F1为89.4%。改进后的TCNN模型在上述评估指标上表现更为出色。经过结构优化和参数调整后,TCNN模型的ACC提高到93.8%,显著高于MNN模型。P值也有所提高,达到91.5%,表明在减少误报和提高漏洞识别准确性方面能力增强。集成分类系统利用MNN和改进后的TCNN模型的优势,ACC达到95.2%。这一提升不仅证明了该系统在准确分类漏洞数据方面的卓越能力,还证明了MNN和TCNN模型在应对复杂网络安全环境中的协同效应。本研究提出的综合分类系统显著提高了计算机漏洞的分类性能,为网络安全管理提供了强大的技术支持。该系统在处理复杂漏洞数据集时表现出更高的准确性和稳定性,对实际应用和研究具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fc/11771930/d1a15b34165a/pone.0318075.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验