Jaiswal Raju, Pivodic Aldina, Zoulakis Michail, Axelsson Kristian F, Litsne Henrik, Johansson Lisa, Lorentzon Mattias
Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden.
APNC Sweden, 431 53 Mölndal, Sweden.
J Bone Miner Res. 2025 Jun 3;40(6):779-790. doi: 10.1093/jbmr/zjaf020.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from HR-pQCT. In a prospective cohort study of 3028 community-dwelling women aged 75-80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by DXA and HR-pQCT. Medical records, a regional x-ray archive, and registers were used to identify incident fractures and death. Prediction models for hip, major osteoporotic fracture (MOF), and any fracture were developed using Cox proportional hazards regression and machine learning algorithms (neural network, random forest, ensemble, and Extreme Gradient Boosting). In the 2856 (94.3%) women with complete HR-pQCT data at 2 tibia sites (distal and ultra-distal), the median follow-up period was 8.0 yr, and 217 hip, 746 MOF, and 1008 any type of incident fracture occurred. In Cox regression models adjusted for age, BMI, clinical risk factors (CRFs), and FN BMD, the strongest predictors of hip fracture were tibia total volumetric BMD and cortical thickness. The performance of the Cox regression-based prediction models for hip fracture was significantly improved by HR-pQCT (time-dependent AUC; area under receiver operating characteristic curve at 5 yr of follow-up 0.75 [0.64-0.85]), compared to a reference model including CRFs and FN BMD (AUC = 0.71 [0.58-0.81], p < .001) and a Fracture Risk Assessment Tool risk score model (AUC = 0.70 [0.60-0.80], p < .001). The Cox regression model for hip fracture had a significantly higher accuracy than the neural network-based model, the best-performing machine learning algorithm, at clinically relevant sensitivity levels. We conclude that the addition of HR-pQCT parameters improves the prediction of hip fractures in a cohort of older Swedish women.
髋部骨折是最严重的骨质疏松性骨折后果,其社会经济负担正在增加,而目前的临床风险评估缺乏敏感性。本研究旨在通过纳入源自高分辨率外周定量计算机断层扫描(HR-pQCT)的骨微结构和成分测量值,开发一种改进的髋部骨折预测方法。在一项对3028名年龄在75至80岁的社区居住女性进行的前瞻性队列研究中,所有参与者均回答了问卷,并接受了双能X线吸收法(DXA)和HR-pQCT进行的人体测量学和骨基线检查。利用医疗记录、区域X线存档和登记册来确定新发骨折和死亡情况。使用Cox比例风险回归和机器学习算法(神经网络、随机森林、集成学习和极端梯度提升)开发了髋部、主要骨质疏松性骨折(MOF)和任何骨折的预测模型。在2856名(94.3%)在2个胫骨部位(远端和超远端)有完整HR-pQCT数据的女性中,中位随访期为8.0年,发生了217例髋部骨折、746例MOF和1008例任何类型的新发骨折。在根据年龄、体重指数、临床风险因素(CRF)和股骨颈骨密度进行调整的Cox回归模型中,髋部骨折的最强预测因素是胫骨总体积骨密度和皮质厚度。与包括CRF和股骨颈骨密度的参考模型(AUC = 0.71 [0.58 - 0.81],p <.001)以及骨折风险评估工具风险评分模型(AUC = 0.70 [0.60 - 0.80],p <.001)相比,基于Cox回归的髋部骨折预测模型的性能通过HR-pQCT得到了显著改善(时间依赖性AUC;随访5年时受试者操作特征曲线下面积为0.75 [0.64 - 0.85])。在临床相关的敏感性水平上,髋部骨折的Cox回归模型比表现最佳的机器学习算法——基于神经网络的模型具有显著更高的准确性。我们得出结论,添加HR-pQCT参数可改善对一组瑞典老年女性髋部骨折的预测。