Liu Qin-Ling, Guo Rui, Huang Ya-Hui, Li Xin
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China.
Chaos. 2025 Jan 1;35(1). doi: 10.1063/5.0245319.
Under investigation in this paper is the integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies. The linear dispersion relations, completeness relations, inverse scattering transform, and fractional soliton solutions of the integrable fractional discrete modified Korteweg-de Vries hierarchy will be explored. The inverse scattering problem will be solved accurately by constructing Gel'fand-Levitan-Marchenko equations and Riemann-Hilbert problem. The peak velocity of fractional soliton solutions will be analyzed. Numerical solutions of the non-integrable fractional averaged discrete modified Korteweg-de Vries equation, which has a simpler form than the integrable one, will be obtained by a split-step Fourier scheme.
本文所研究的是可积和不可积的分数阶离散修正科特韦格 - 德弗里斯层级。将探索可积分数阶离散修正科特韦格 - 德弗里斯层级的线性色散关系、完备性关系、逆散射变换以及分数阶孤子解。通过构造格尔范德 - 列维坦 - 马尔琴科方程和黎曼 - 希尔伯特问题来精确求解逆散射问题。将分析分数阶孤子解的峰值速度。通过分步傅里叶格式获得形式比可积方程更简单的不可积分数阶平均离散修正科特韦格 - 德弗里斯方程的数值解。