Suppr超能文献

一种用于预测新生儿败血症30天死亡率的代谢相关模型的开发与内部验证

Development and internal validation of a metabolism-related model for predicting 30-day mortality in neonatal sepsis.

作者信息

Tu Xiangwen, Chen Junkun, Liu Wen

机构信息

Laboratory of Eugenics Genetics, GanZhou Women and Children's Health Care Hospital, GanZhou, Jiangxi, China.

Neonatal intensive care Unit, GanZhou Women and Children's Health Care Hospital, GanZhou, Jiangxi, China.

出版信息

BMC Infect Dis. 2025 Jan 27;25(1):121. doi: 10.1186/s12879-025-10527-z.

Abstract

OBJECTIVE

Neonatal sepsis, a severe infectious disease associated with high mortality rates, is characterized by metabolic disturbances that play a crucial role in its progression. The aim of this study is to develop a metabolism-related model for assessing 30-day mortality in neonatal sepsis.

METHODS

The clinical data of neonatal sepsis at Ganzhou Women and Children's Health Care Hospital from January 2019 to December 2022 were retrospectively analyzed. Neonatal sepsis cases were divided into survival and non-survival groups. Multivariate logistic regression analysis was used to identify the independent risk factors for 30-day mortality. A nomogram model was developed based on these risk factors. Internal validation of the model was performed using 10-fold cross-validation. The predictive performance was evaluated through receiver operating characteristic (ROC) curves and calibration curve analyses. Decision curve analysis (DCA) was conducted to evaluate the clinical applicability of the developed model.

RESULTS

The study included a total of 156 cases of neonatal sepsis. Multivariate logistic regression analysis revealed that alanine(ALA), citrulline(CIT)), octadecanoylcarnitine(C18) and methionine(MET) were identified as independent risk factors for 30-day mortality of neonatal sepsis. The ROC curve showed an area under the curve of AUC = 0.866 (95% CI 0.796-0.936, P < 0.05). The calibration curve and DCA indicated excellent performance of the model.

CONCLUSION

This study establishes a predictive model for neonatal sepsis-associated 30-day mortality, effectively capturing the perturbations in amino acid metabolism and fatty acid oxidation, thereby demonstrating robust predictive capabilities.

摘要

目的

新生儿败血症是一种与高死亡率相关的严重传染病,其特征是代谢紊乱在疾病进展中起关键作用。本研究旨在建立一个与代谢相关的模型,用于评估新生儿败血症的30天死亡率。

方法

回顾性分析2019年1月至2022年12月在赣州市妇幼保健院的新生儿败血症临床资料。将新生儿败血症病例分为存活组和非存活组。采用多因素logistic回归分析确定30天死亡率的独立危险因素。基于这些危险因素建立列线图模型。使用10倍交叉验证对模型进行内部验证。通过受试者工作特征(ROC)曲线和校准曲线分析评估预测性能。进行决策曲线分析(DCA)以评估所建立模型的临床适用性。

结果

本研究共纳入156例新生儿败血症病例。多因素logistic回归分析显示,丙氨酸(ALA)、瓜氨酸(CIT)、十八烷酰肉碱(C18)和蛋氨酸(MET)被确定为新生儿败血症30天死亡率的独立危险因素。ROC曲线显示曲线下面积AUC = 0.866(95%CI 0.796 - 0.936,P < 0.05)。校准曲线和DCA表明该模型具有良好的性能。

结论

本研究建立了一个与新生儿败血症相关的30天死亡率预测模型,有效捕捉了氨基酸代谢和脂肪酸氧化的扰动,从而显示出强大的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b824/11771113/17190388d462/12879_2025_10527_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验