Weiss Silvia, Decker Simon, Kugler Christoph, Gómez Laura Bocanegra, Fasching Helene, Benisch Denise, Alioglu Fatih, Ferencz Levente, Birkfeld Theresa, Ilievski Filip, Baumann Volker, Duran Alina, Dusinovic Enes, Follrich Nadine, Milenkovic Sandra, Mihalicokova Dajana, Paunov Daniel, Singeorzan Karla, Zehetmayer Nikolaus, Zivanonvic Dejan, Lächelt Ulrich, Boersma Auke, Rülicke Thomas, Sami Haider, Ogris Manfred
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Institute of In-Vivo and In-Vitro Models, Biomodels Austria, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9000-9018. doi: 10.1021/acsami.4c19340. Epub 2025 Jan 28.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges. Intracellularly responsive cross-links of cLPEI significantly accelerated the endosomal escape and offered efficient SSO release to the cell's nucleus, thereby leading to high splice correction in vitro. In vivo performance of cLPEI-SSOs was investigated in a novel transgenic mouse model for splice correction, spatiotemporal tracking of SSO delivery in wild-type mice, and biodistribution in a colorectal cancer peritoneal metastasis model. A single intravenous application of 5 mg kg cLPEI-SSOs induced splice correction in liver, lung, kidney, and bladder, giving functional protein, which was validated by RT-PCR. Near-infrared (NIR) fluorescence imaging and X-ray computed tomography revealed improved organ retention and reduced renal excretion of SSOs. NIR microscopy demonstrated the accumulation of SSOs in angiogenic tumors within the pancreas. Successful nuclear delivery of SSOs was observed in the hepatocytes. Thus, cLPEI nanocarriers resulted in highly efficient splice correction in vivo, highlighting the critical role of the enhanced SSO bioavailability.
剪接转换寡核苷酸(SSO)可在病理学中恢复蛋白质功能,是操纵RNA剪接机制的有前景的工具。递送载体可显著提高SSO在体内的功能,并允许降低剂量,从而应对RNA靶向治疗的挑战。在此,我们报道了一种基于氧化还原响应性二硫键交联的低分子量线性聚乙烯亚胺(cLPEI)的生物相容性SSO纳米载体,用于克服从亚细胞区室到血清稳定性以及最终体内递送挑战的多种生物屏障。cLPEI的细胞内响应性交联显著加速了内体逃逸,并将SSO有效释放到细胞核,从而在体外实现了高剪接校正。在一种用于剪接校正的新型转基因小鼠模型中研究了cLPEI-SSO的体内性能,在野生型小鼠中对SSO递送进行时空追踪,并在结直肠癌腹膜转移模型中研究其生物分布。单次静脉注射5 mg/kg cLPEI-SSO可在肝脏、肺、肾和膀胱中诱导剪接校正,产生功能性蛋白质,这通过RT-PCR得到验证。近红外(NIR)荧光成像和X射线计算机断层扫描显示SSO在器官中的保留得到改善,肾排泄减少。NIR显微镜显示SSO在胰腺内的血管生成性肿瘤中积累。在肝细胞中观察到SSO成功递送至细胞核。因此,cLPEI纳米载体在体内导致了高效的剪接校正,突出了增强的SSO生物利用度的关键作用。