Chiranjeevi Shivani, Saadati Mojdeh, Deng Zi K, Koushik Jayanth, Jubery Talukder Z, Mueller Daren S, O'Neal Matthew, Merchant Nirav, Singh Aarti, Singh Asheesh K, Sarkar Soumik, Singh Arti, Ganapathysubramanian Baskar
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
PNAS Nexus. 2024 Dec 27;4(1):pgae575. doi: 10.1093/pnasnexus/pgae575. eCollection 2025 Jan.
Insect pests significantly impact global agricultural productivity and crop quality. Effective integrated pest management strategies require the identification of insects, including beneficial and harmful insects. Automated identification of insects under real-world conditions presents several challenges, including the need to handle intraspecies dissimilarity and interspecies similarity, life-cycle stages, camouflage, diverse imaging conditions, and variability in insect orientation. An end-to-end approach for training deep-learning models, InsectNet, is proposed to address these challenges. Our approach has the following key features: (i) uses a large dataset of insect images collected through citizen science along with label-free self-supervised learning to train a global model, (ii) fine-tuning this global model using smaller, expert-verified regional datasets to create a local insect identification model, (iii) which provides high prediction accuracy even for species with small sample sizes, (iv) is designed to enhance model trustworthiness, and (v) democratizes access through streamlined machine learning operations. This global-to-local model strategy offers a more scalable and economically viable solution for implementing advanced insect identification systems across diverse agricultural ecosystems. We report accurate identification (>96% accuracy) of numerous agriculturally and ecologically relevant insect species, including pollinators, parasitoids, predators, and harmful insects. InsectNet provides fine-grained insect species identification, works effectively in challenging backgrounds, and avoids making predictions when uncertain, increasing its utility and trustworthiness. The model and associated workflows are available through a web-based portal accessible through a computer or mobile device. We envision InsectNet to complement existing approaches, and be part of a growing suite of AI technologies for addressing agricultural challenges.
害虫对全球农业生产力和作物质量有重大影响。有效的综合虫害管理策略需要识别昆虫,包括益虫和害虫。在现实世界条件下自动识别昆虫面临诸多挑战,包括需要处理种内差异和种间相似性、生命周期阶段、伪装、多样的成像条件以及昆虫方向的变异性。本文提出了一种用于训练深度学习模型的端到端方法——昆虫网(InsectNet),以应对这些挑战。我们的方法具有以下关键特征:(i)使用通过公民科学收集的大量昆虫图像数据集以及无标签自监督学习来训练全局模型;(ii)使用更小的、经过专家验证的区域数据集对该全局模型进行微调,以创建本地昆虫识别模型;(iii)即使对于样本量较小的物种也能提供高预测准确率;(iv)旨在提高模型的可信度;(v)通过简化的机器学习操作实现了访问的民主化。这种全局到局部的模型策略为在不同农业生态系统中实施先进的昆虫识别系统提供了一种更具可扩展性和经济可行性的解决方案。我们报告了对包括传粉者、寄生蜂、捕食者和害虫在内的众多农业和生态相关昆虫物种的准确识别(准确率>96%)。昆虫网提供细粒度的昆虫物种识别,在具有挑战性的背景下也能有效工作,并且在不确定时避免进行预测,从而提高了其实用性和可信度。该模型及相关工作流程可通过基于网络的门户获取,可通过计算机或移动设备访问。我们设想昆虫网能补充现有方法,并成为不断发展的用于应对农业挑战的人工智能技术套件的一部分。