Lu Yan, Chen Cheng, Li Hangyu, Zhao Peng, Zhao Yuanfeng, Li Bohan, Zhou Wei, Fan Gaofeng, Guan Dongshi, Zheng Yijun
School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, PR China.
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, PR China.
Nat Commun. 2025 Feb 4;16(1):1365. doi: 10.1038/s41467-024-54880-0.
Viscoelastic heterogeneity of matrices plays a pivotal role in cancer cell spreading, migration, and metastasis. However, the creation of viscoelastic platforms with spatial-temporal regulation is hindered by cytotoxicity and short regulation durations. Our research presents a dual mechanism for stress relaxation regulation- both intrinsic and responsive- by incorporating Schiff base bonds and a visible light-responsive thiuram disulfide (TDS) moiety into the hydrogel. Modifying base bonds facilitates a broad spectrum of intrinsic stress relaxation times. At the same time, incorporating the visible light-responsive TDS moiety endows the hydrogel with responsive viscoelastic properties. These properties are characterized by minimal cytotoxicity, spatial-temporal controllability, dose dependency, and reversibility. Utilizing this platform, we demonstrate that ovarian cancer cells exhibit contrasting behaviors in contraction and spreading when subjected to dynamic stress relaxation changes over various time periods. Additionally, we observed a "memory effect" in the cell's response to alterations in stress relaxation time. We can spatially direct cell migration through viscoelastic heterogeneity, achieved via photopatterning substrates and laser spots. This innovative approach provides a means to regulate the viscoelasticity of hydrogels across a wide range of timescales, thereby opening avenues for more advanced studies into how cells interpret and respond to spatiotemporal viscoelastic signals.
基质的粘弹性异质性在癌细胞的扩散、迁移和转移中起着关键作用。然而,具有时空调节功能的粘弹性平台的构建受到细胞毒性和调节持续时间短的阻碍。我们的研究提出了一种应力松弛调节的双重机制——既有内在的也有响应性的——通过将席夫碱键和可见光响应性二硫化秋兰姆(TDS)部分引入水凝胶中。修饰碱基键有助于实现广泛的内在应力松弛时间。同时,引入可见光响应性TDS部分赋予水凝胶响应性粘弹性特性。这些特性的特点是细胞毒性最小、具有时空可控性、剂量依赖性和可逆性。利用这个平台,我们证明,当卵巢癌细胞在不同时间段受到动态应力松弛变化时,它们在收缩和扩散方面表现出相反的行为。此外,我们在细胞对应力松弛时间变化的反应中观察到了“记忆效应”。我们可以通过粘弹性异质性在空间上引导细胞迁移,这是通过光图案化底物和激光光斑实现的。这种创新方法提供了一种在广泛的时间尺度上调节水凝胶粘弹性的手段,从而为更深入研究细胞如何解释和响应时空粘弹性信号开辟了道路。