Roy Chandan Kumar
Credit Guarantee Department, Bangladesh Bank (Central Bank of Bangladesh), Head Office, Dhaka, 1000, Bangladesh.
Heliyon. 2025 Jan 17;11(2):e42092. doi: 10.1016/j.heliyon.2025.e42092. eCollection 2025 Jan 30.
This study investigates the impact of business environment obstacles on the performance of Cottage, Micro, Small, and Medium Enterprises (CMSMEs) in Bangladesh, utilizing data from 998 firms in the 2022 World Bank Enterprise Survey. A recursive feature elimination algorithm identified ten key business factors and obstacles from an initial set of twenty-eight that significantly influence CMSME performance. Analysis using ordinary least squares (OLS) and generalized least squares (GLS) regression models reveals that investments in electricity infrastructure, access to financial services, and obtaining quality certifications positively impact CMSME performance. In contrast, challenges such as power outages, delays in licensing, uncompetitive practices, and stringent tax and labor regulations hinder performance. Additionally, the predictive accuracy of the OLS model was compared with several machine learning algorithms, including decision tree, random forest, support vector, and gradient boosting, using a 75-25 training-testing split and k-fold cross-validation. The findings provide data driven actionable insights for policymakers to address specific obstacles, thereby enhancing the business environment for CMSMEs in Bangladesh.
本研究利用2022年世界银行企业调查中998家公司的数据,调查了商业环境障碍对孟加拉国微型、小型和中型企业(CMSMEs)绩效的影响。一种递归特征消除算法从最初的28个因素中识别出10个对CMSMEs绩效有显著影响的关键商业因素和障碍。使用普通最小二乘法(OLS)和广义最小二乘法(GLS)回归模型进行的分析表明,电力基础设施投资、获得金融服务以及获得质量认证对CMSMEs绩效有积极影响。相比之下,停电、许可证发放延迟、不正当竞争行为以及严格的税收和劳动法规等挑战则会阻碍企业绩效。此外,使用75-25的训练-测试分割和k折交叉验证,将OLS模型的预测准确性与包括决策树、随机森林、支持向量和梯度提升在内的几种机器学习算法进行了比较。研究结果为政策制定者提供了数据驱动的可操作见解,以解决特定障碍,从而改善孟加拉国CMSMEs的商业环境。