Suppr超能文献

探索微生物和基因标志物在肺鳞状细胞癌中的预后作用。

Exploring the prognostic role of microbial and genetic markers in lung squamous cell carcinoma.

作者信息

Yang Fan, Jia Xiaodong, Ma Zihuan, Liu Siyao, Liu Chunzi, Chen Dan, Wang Xiuju, Qian Niansong, Ma Hui

机构信息

Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.

Beijing ChosenMed Clinical Laboratory Co. Ltd, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China.

出版信息

Sci Rep. 2025 Feb 6;15(1):4499. doi: 10.1038/s41598-025-88120-2.

Abstract

Despite advances in diagnostic and therapeutic strategies, the prognosis of lung squamous cell carcinoma (LUSC) patients remains poor, and the potential of microbiome-based prognostic biomarkers and therapeutic targets remains largely unexplored. LUSC patient data from The Cancer Genome Atlas (TCGA), including microbial genus level abundance data and RNA sequencing (RNA-Seq) data, were used as a training dataset. Two other independent datasets GSE19188 and GSE157009 serve as validation datasets. A microbiome-based risk score (RS) model was constructed by univariate Cox regression analysis combined with the least absolute contraction and selection operator (LASSO) regression. 18 microbial genera were found to be significantly associated with RFS in LUSC patients. The microbial signature built with these microbial genera, exhibited robust predictive accuracy in both the training and validation datasets. Furthermore, hub mRNA between high- and low-risk groups were selected by XGBOOST and intersect with mRNAs screened by univariate Cox regression analysis, finally identifying four mRNA significantly associated with LUSC prognosis. This study reveals a complex interplay between the lung microbiome and genetic biomarkers, and identifies specific microbial-based and mRNA associated with prognosis in LUSC. These findings provide a basis for future studies aimed to elucidate the mechanisms underlying these associations and provide potential biomarkers for guiding treatment decisions and improving patient outcomes.

摘要

尽管在诊断和治疗策略方面取得了进展,但肺鳞状细胞癌(LUSC)患者的预后仍然很差,基于微生物组的预后生物标志物和治疗靶点的潜力在很大程度上仍未得到探索。来自癌症基因组图谱(TCGA)的LUSC患者数据,包括微生物属水平的丰度数据和RNA测序(RNA-Seq)数据,被用作训练数据集。另外两个独立数据集GSE19188和GSE157009用作验证数据集。通过单变量Cox回归分析结合最小绝对收缩和选择算子(LASSO)回归构建了基于微生物组的风险评分(RS)模型。发现18个微生物属与LUSC患者的无复发生存期(RFS)显著相关。用这些微生物属构建的微生物特征在训练和验证数据集中均表现出强大的预测准确性。此外,通过XGBOOST选择高风险和低风险组之间的枢纽mRNA,并与单变量Cox回归分析筛选出的mRNA相交,最终确定了四个与LUSC预后显著相关的mRNA。本研究揭示了肺微生物组与遗传生物标志物之间的复杂相互作用,并确定了与LUSC预后相关的特定微生物和mRNA。这些发现为未来旨在阐明这些关联背后机制的研究提供了基础,并为指导治疗决策和改善患者预后提供了潜在的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6db/11802751/98fe3915252a/41598_2025_88120_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验