Suppr超能文献

预测认知衰退:深度学习揭示轻度认知障碍前阶段大脑的细微变化。

Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

作者信息

Yue Ling, Pan Yongsheng, Li Wei, Mao Junyan, Hong Bo, Gu Zhen, Liu Mingxia, Shen Dinggang, Xiao Shifu

机构信息

Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, 200032, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, 600 South Wanping Road, 200032, Shanghai, China.

School of Computer Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China.

出版信息

J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.

Abstract

BACKGROUND

Mild cognitive impairment (MCI) and preclinical MCI (e.g., subjective cognitive decline, SCD) are considered risk states of dementia, such as Alzheimer's Disease (AD). However, it is challenging to accurately predict conversion from normal cognition (NC) to MCI, which is important for early detection and intervention. Since neuropathological changes may have occurred in the brain many years before clinical AD, we sought to detect the subtle brain changes in the pre-MCI stage using a deep-learning method based on structural Magnetic Resonance Imaging (MRI).

OBJECTIVES

To discover early structural neuroimaging changes that differentiate between stable and progressive cognitive status, and to establish a predictive model for MCI conversion.

DESIGN, SETTING AND PARTICIPANTS: We first created a unique deep-learning framework for pre-AD conversion prediction through the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) database (n = 845). Then, we tested the model on ADNI-2 (n = 321, followed 3 years) and our private study (n = 109), the China Longitudinal Aging Study (CLAS), to validate the rationality for pre-MCI conversion prediction. The CLAS is a 7-year community-based cohort study in Shanghai. Our framework consisted of two steps: 1) a single-ROI-based network (SRNet) for identifying informative regions in the brain, and 2) a multi-ROI-based network (MRNet) for pre-AD conversion prediction. We then utilized these "ROI-based deep learning" neural networks to create a composite score using advanced algorithm-building. We coined this score as the Progressive Index (PI), which serves as a metric for assessing the propensity of AD conversion. Ultimately, we employed the PI to gauge its predictive capability for MCI conversion in both ADNI-2 and CLAS datasets.

MEASUREMENTS

We primarily utilized baseline T1-weighted MRI scans to identify the most discriminative brain regions and subsequently developed the PI in both training and validation datasets. We compared the PI across different cognitive groups and conducted logistic regression models along with their AUCs, adjusting for education level, gender, neuropsychological test scores, and the presence of comorbid conditions.

RESULTS

We trained the SRNet and MRNet using 845 subjects from ADNI-1 with baseline MRI data, in which AD and progressive MCI (converting to AD within 3 years) patients were considered as positive samples, while NC and stable MCI (remaining stable for 3 years) subjects were considered as negative samples. The convolutional neural networks identified the top 10 regions of interest (ROIs) for distinguishing progressive from stable cases. These key brain regions included the hippocampus, amygdala, temporal lobe, insula, and anterior cerebellum. A total of 321 subjects from ADNI-2, including 209 NC (18 progressive NC (pNC), 113 stable NC (sNC), and 78 remaining NC (rNC)) and 112 SCD (11 pSCD, 5 sSCD, and 96 rSCD), as well as 109 subjects from CLAS, including 17 sNC, 16 pNC, 52 sSCD and 24 pSCD participated in the test set, separately. We found that the PI score effectively sorted all subjects by their stages (stable vs progressive). Furthermore, the PI score demonstrated excellent discrimination between the two outcomes in the CLAS data(p<0.001), even after controlling for age, gender, education level, depression symptoms, anxiety symptoms, somatic diseases, and baseline MoCA score. Better performance for prediction progression to MCI in CLAS was obtained when the PI score was combined with clinical measures (AUC=0.812; 95 %CI: 0.725-0.900).

CONCLUSIONS

This study effectively predicted the progression to MCI among order individuals at normal cognition state by deep learning algorithm with MRI scans. Exploring the key brain alterations during the very early stages, specifically the transition from NC to MCI, based on deep learning methods holds significant potential for further research and contributes to a deeper understanding of disease mechanisms.

摘要

背景

轻度认知障碍(MCI)和临床前MCI(如主观认知下降,SCD)被认为是痴呆症(如阿尔茨海默病,AD)的风险状态。然而,准确预测从正常认知(NC)到MCI的转变具有挑战性,而这对于早期检测和干预很重要。由于神经病理变化可能在临床AD出现的许多年前就已在大脑中发生,我们试图使用基于结构磁共振成像(MRI)的深度学习方法来检测MCI前期阶段大脑的细微变化。

目的

发现能够区分稳定和进展性认知状态的早期结构神经影像学变化,并建立MCI转变的预测模型。

设计、设置和参与者:我们首先通过阿尔茨海默病神经影像学倡议-1(ADNI-1)数据库(n = 845)创建了一个独特的深度学习框架用于AD前期转变预测。然后,我们在ADNI-2(n = 321,随访3年)和我们的私人研究——中国纵向老龄化研究(CLAS,n = 109)上测试该模型,以验证MCI前期转变预测的合理性。CLAS是一项在上海进行的为期7年的基于社区的队列研究。我们的框架包括两个步骤:1)基于单个感兴趣区域(ROI)的网络(SRNet),用于识别大脑中的信息区域;2)基于多个ROI的网络(MRNet),用于AD前期转变预测。然后,我们利用这些“基于ROI的深度学习”神经网络,通过先进的算法构建来创建一个综合评分。我们将这个评分命名为进展指数(PI),它作为评估AD转变倾向的一个指标。最终,我们使用PI来评估其在ADNI-2和CLAS数据集中对MCI转变的预测能力。

测量

我们主要利用基线T1加权MRI扫描来识别最具区分性的脑区,并随后在训练和验证数据集中开发PI。我们比较了不同认知组的PI,并进行了逻辑回归模型及其AUC分析,同时调整了教育水平、性别、神经心理测试分数和合并症的存在情况。

结果

我们使用来自ADNI-1的845名具有基线MRI数据的受试者训练SRNet和MRNet,其中AD和进展性MCI(在3年内转变为AD)患者被视为阳性样本,而NC和稳定MCI(3年内保持稳定)受试者被视为阴性样本。卷积神经网络识别出用于区分进展性和稳定性病例的前10个感兴趣区域(ROI)。这些关键脑区包括海马体、杏仁核、颞叶、脑岛和小脑前部。ADNI-2的321名受试者,包括209名NC(18名进展性NC(pNC),113名稳定NC(sNC)和78名其余NC(rNC))和112名SCD(11名pSCD,5名sSCD和96名rSCD),以及CLAS的109名受试者,包括17名sNC、16名pNC、52名sSCD和24名pSCD,分别参与了测试集。我们发现PI评分有效地按阶段(稳定与进展)对所有受试者进行了分类。此外,即使在控制了年龄、性别、教育水平、抑郁症状、焦虑症状、躯体疾病和基线MoCA评分后,PI评分在CLAS数据中对两种结果也显示出极好的区分度(p<0.001)。当PI评分与临床指标相结合时,在CLAS中对进展为MCI的预测表现更好(AUC = 0.812;95%CI:0.725 - 0.900)。

结论

本研究通过MRI扫描的深度学习算法有效地预测了正常认知状态个体进展为MCI的情况。基于深度学习方法探索极早期阶段,特别是从NC到MCI的转变过程中的关键脑区改变,具有进一步研究的巨大潜力,并有助于更深入地理解疾病机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验