Ganesan Prasanth, Pedron Maxime, Feng Ruibin, Rogers Albert J, Deb Brototo, Chang Hui Ju, Ruiperez-Campillo Samuel, Srivastava Viren, Brennan Kelly A, Giles Wayne R, Baykaner Tina, Clopton Paul, Wang Paul J, Schotten Ulrich, Krummen David E, Narayan Sanjiv M
Division of Cardiology, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA (P.G., M.P., R.F., A.J.R., B.D., H.J.C., S.R.-C., V.S., K.A.B., T.B., P.C., P.J.W., S.M.N.).
Department of Computer Science, ETH Zurich, Switzerland (S.R.-C.).
Circ Arrhythm Electrophysiol. 2025 Feb;18(2):e012860. doi: 10.1161/CIRCEP.124.012860. Epub 2025 Feb 10.
It is difficult to identify patients with atrial fibrillation (AF) most likely to respond to ablation. While any arrhythmia patient may recur after acutely successful ablation, AF is unusual in that patients may have long-term arrhythmia freedom despite a lack of acute success. We hypothesized that acute and chronic AF ablation outcomes may reflect distinct physiology and used machine learning of multimodal data to identify their phenotypes.
We studied 561 consecutive patients in the Stanford AF ablation registry (66±10 years, 28% women, 67% nonparoxysmal), from whom we extracted 72 data features of electrograms, electrocardiogram, cardiac structure, lifestyle, and clinical variables. We compared 6 machine learning models to predict acute and long-term end points after ablation and used Shapley explainability analysis to contrast phenotypes. We validated our results in an independent external population of n=77 patients with AF.
The 1-year success rate was 69.5%, and the acute termination rate was 49.6%, which correlated poorly on a patient-by-patient basis (φ coefficient=0.08). The best model for acute termination (area under the curve=0.86, Random Forest) was more predictive than for long-term outcomes (area under the curve=0.67, logistic regression; <0.001). Phenotypes for long-term success reflected clinical and lifestyle features, while phenotypes for AF termination reflected electrical features. The need for AF induction predicted both phenotypes. The external validation cohort showed similar results (area under the curve=0.81 and 0.64, respectively) with similar phenotypes.
Long-term and acute responses to AF ablation reflect distinct clinical and electrical physiology, respectively. This de-linking of phenotypes raises the question of whether long-term success operates through factors such as attenuated AF progression. There remains an urgent need to develop procedural predictors of long-term AF ablation success.
识别最有可能从心房颤动(AF)消融术中获益的患者具有一定难度。虽然任何心律失常患者在消融术急性成功后都可能复发,但AF的特殊之处在于,即使急性消融未成功,患者仍可能长期维持无心律失常状态。我们推测,急性和慢性AF消融结果可能反映不同的生理机制,并利用多模态数据的机器学习来识别其表型。
我们研究了斯坦福AF消融登记处的561例连续患者(66±10岁,28%为女性,67%为非阵发性AF),从中提取了72项关于心内膜电图、心电图、心脏结构、生活方式和临床变量的数据特征。我们比较了6种机器学习模型,以预测消融术后的急性和长期终点,并使用Shapley可解释性分析来对比表型。我们在一个独立的n=77例AF患者的外部人群中验证了我们的结果。
1年成功率为69.5%,急性终止率为49.6%,在个体水平上两者相关性较差(φ系数=0.08)。预测急性终止的最佳模型(曲线下面积=0.86,随机森林模型)比预测长期结果的模型(曲线下面积=0.67,逻辑回归模型;P<0.001)更具预测性。长期成功的表型反映了临床和生活方式特征,而AF终止的表型反映了电生理特征。AF诱发的必要性可预测这两种表型。外部验证队列显示了类似的结果(曲线下面积分别为0.81和0.64)以及类似的表型。
AF消融术的长期和急性反应分别反映了不同的临床和电生理机制。这种表型的脱钩提出了一个问题,即长期成功是否通过诸如AF进展减缓等因素起作用。迫切需要开发AF长期消融成功的手术预测指标。