Suppr超能文献

一种结合机器学习和小波变换的集成工作流程,用于非均质地下水系统的自动表征。

An integrated workflow combining machine learning and wavelet transform for automated characterization of heterogeneous groundwater systems.

作者信息

Mohammed Musaab A A, Szabó Norbert P, Eltijani Abdelrhim, Szűcs Péter

机构信息

Faculty of Earth and Environmental Sciences and Engineering, University of Miskolc, Miskolc, Egyetemváros, 3515, Hungary.

National Laboratory for Water Science and Water Security, Institute of Water Resources and Environmental Management, University of Miskolc, Miskolc, Hungary.

出版信息

Sci Rep. 2025 Feb 10;15(1):4973. doi: 10.1038/s41598-025-89410-5.

Abstract

Groundwater aquifers are complex systems that require accurate lithological and hydrogeological characterization for effective development and management. Traditional methods, such as core analysis and pumping tests provide precise results but are expensive, time-consuming, and impractical for large-scale investigations. Geophysical well logging data offers an efficient and continuous alternative, though manual interpretation of well logs can be challenging and may result in ambiguous outcomes. This research introduces an automated approach using machine learning and signal processing techniques to enhance the aquifer characterization, focusing on the Quaternary system in the Debrecen area, Eastern Hungary. The proposed methodology is initiated with the imputation of missing deep resistivity logs from spontaneous potential, natural gamma ray, and medium resistivity logs utilizing a gated recurrent unit (GRU) neural network. This preprocessing step significantly improved the data quality for subsequent analyses. Self-organizing maps (SOMs) are then applied to the preprocessed well logs to map the distribution of the lithological units across the groundwater system. Considering the mathematical and geological aspects, the SOMs delineated three primary lithological units: shale, shaly sand, and sand and gravel which aligned closely with drilling data. Continuous wavelet transform analysis further refined the mapping of lithological and hydrostratigraphical boundaries. The integrated methods effectively mapped the subsurface aquifer generating a 3D lithological model that simplifies the aquifer into four major hydrostratigraphical zones. The delineated lithology aligned closely with the deterministically estimated shale volume and permeability, revealing higher permeability and lower shale volume in the sandy and gravelly layers. This model provides a robust foundation for groundwater flow and contaminant transport modeling and can be extended to other regions for improved aquifer management and development.

摘要

地下水含水层是复杂的系统,需要准确的岩性和水文地质特征描述才能进行有效的开发和管理。传统方法,如岩芯分析和抽水试验能提供精确结果,但成本高昂、耗时且不适用于大规模调查。地球物理测井数据提供了一种高效且连续的替代方法,不过对测井曲线进行人工解释可能具有挑战性,并且可能导致结果不明确。本研究引入了一种使用机器学习和信号处理技术的自动化方法来增强含水层特征描述,重点关注匈牙利东部德布勒森地区的第四系。所提出的方法首先利用门控循环单元(GRU)神经网络从自然电位、自然伽马射线和中电阻率测井数据中插补缺失的深电阻率测井数据。这一预处理步骤显著提高了后续分析的数据质量。然后将自组织映射(SOM)应用于预处理后的测井曲线,以绘制地下水系统中岩性单元的分布。从数学和地质方面考虑,SOM划分出三个主要岩性单元:页岩、泥质砂岩以及砂和砾石,这与钻探数据密切吻合。连续小波变换分析进一步细化了岩性和水文地层边界的映射。这些综合方法有效地绘制了地下含水层,生成了一个三维岩性模型,该模型将含水层简化为四个主要的水文地层区。所划分的岩性与确定性估计的页岩体积和渗透率密切相关,显示出砂质和砾石层中渗透率较高且页岩体积较低。该模型为地下水流和污染物运移建模提供了坚实基础,并且可以扩展到其他地区以改善含水层的管理和开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e641/11811210/33c92b997be1/41598_2025_89410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验