De Croon Robin, Segovia-Lizano Daniela, Finglas Paul, Vanden Abeele Vero, Verbert Katrien
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven, 3001, Belgium, 32 16 37 39 76.
Food & Nutrition National Biosciences Research Infrastructure, Quadram Bioscience Institute, Norwich, United Kingdom.
JMIR Mhealth Uhealth. 2025 Feb 11;13:e51271. doi: 10.2196/51271.
Despite widespread awareness of healthy eating principles, many individuals struggle to translate this knowledge into consistent, sustainable dietary change. Food recommender systems, increasingly used in various settings, offer the potential for personalized guidance and behavior change support. However, traditional approaches may prioritize user preferences or popularity metrics without sufficiently considering long-term nutritional goals. This can inadvertently reinforce unhealthy eating patterns. Emerging research suggests that incorporating explanations into recommender systems can increase transparency, promote informed decision-making, and potentially influence food choices. Yet, the effectiveness of explanations in promoting healthy choices within complex, real-world food environments remain largely unexplored.
This study aims to investigate the design, implementation, and preliminary evaluation of a food recommender system that integrates explanations in a real-world food catering application. We seek to understand how such a system can promote healthy choices while addressing the inherent tensions between user control, meal variety, and the need for nutritionally sound recommendations. Specifically, our objectives are to (1) identify and prioritize key design considerations for food recommenders that balance personalization, nutritional guidance, and user experience; and (2) conduct a proof-of-principle study in a real-life setting to assess the system's effect on user understanding, trust, and potentially on dietary choices.
An iterative, user-centered design process guided the development and refinement of the system across 4 phases: (Phase 0) an exploratory qualitative study (N=26) to understand stakeholder needs and initial system impressions, (Phases 1 and 2) rapid prototyping in real-life deployments (N=45 and N=16, respectively) to iteratively improve usability and features, and (Phase 3) a proof-of-principle study with employees (N=136) to evaluate a set of design goals. We collected a mix of data, including usage logs, pre- and post-study questionnaires, in-app feedback, and a pre- and post-Food Frequency Questionnaire to establish nutritional profiles.
Although we experienced a high drop-out (77% after 7 weeks), motivated and remaining participants valued personalization features, particularly the ability to configure allergies and lifestyle preferences. Explanations increased understanding of recommendations and created a sense of control, even when preferences and healthy options did not fully align. However, a mismatch persisted between individual preferences and nutritionally optimal recommendations. This highlights the design challenge of balancing user control, meal variety, and the promotion of healthy eating.
Integrating explanations into personalized food recommender systems might be promising for supporting healthier food choices and creating a more informed understanding of dietary patterns. Our findings could highlight the importance of balancing user control with both the practical limitations of food service settings and the need for nutritionally sound recommendations. While fully resolving the tension between immediate preferences and long-term health goals is an ongoing challenge, explanations can play a crucial role in promoting more conscious decision-making.
尽管人们普遍知晓健康饮食原则,但许多人仍难以将这些知识转化为持续、可持续的饮食改变。在各种场景中越来越多地被使用的食物推荐系统,为个性化指导和行为改变支持提供了潜力。然而,传统方法可能优先考虑用户偏好或流行度指标,而没有充分考虑长期营养目标。这可能会无意中强化不健康的饮食模式。新兴研究表明,将解释纳入推荐系统可以提高透明度,促进明智的决策,并可能影响食物选择。然而,在复杂的现实世界食物环境中,解释在促进健康选择方面的有效性在很大程度上仍未得到探索。
本研究旨在调查一个在现实世界的餐饮应用中整合了解释的食物推荐系统的设计、实施和初步评估。我们试图了解这样一个系统如何在解决用户控制、膳食多样性以及营养合理推荐需求之间的内在矛盾的同时促进健康选择。具体而言,我们的目标是:(1)确定并优先考虑食物推荐器的关键设计考虑因素,以平衡个性化、营养指导和用户体验;(2)在现实生活环境中进行一项原理验证研究,以评估该系统对用户理解、信任以及潜在的饮食选择的影响。
一个迭代的、以用户为中心的设计过程指导了该系统在4个阶段的开发和完善:(第0阶段)一项探索性定性研究(N = 26),以了解利益相关者的需求和对初始系统的印象;(第1和第2阶段)在现实生活部署中进行快速原型制作(分别为N = 45和N = 16),以迭代地改进可用性和功能;(第3阶段)对员工进行一项原理验证研究(N = 136),以评估一组设计目标。我们收集了多种数据,包括使用日志、研究前后的问卷、应用内反馈以及一份食物频率问卷前后的数据,以建立营养概况。
尽管我们经历了较高的退出率(7周后为77%),但积极参与并留下来的参与者重视个性化功能,特别是配置过敏和生活方式偏好的能力。解释增加了对推荐的理解,并营造了一种控制感,即使偏好和健康选项并不完全一致。然而,个人偏好与营养最优推荐之间仍然存在不匹配。这凸显了在平衡用户控制、膳食多样性和促进健康饮食方面的设计挑战。
将解释纳入个性化食物推荐系统可能有望支持更健康的食物选择,并对饮食模式形成更明智的理解。我们的研究结果可能凸显了在用户控制与食物服务环境的实际限制以及营养合理推荐需求之间取得平衡的重要性。虽然完全解决即时偏好与长期健康目标之间的矛盾仍是一个持续的挑战,但解释在促进更有意识的决策方面可以发挥关键作用。