Suppr超能文献

将机器学习与基质辅助激光解吸电离飞行时间质谱联用用于临床病原体快速准确的抗菌药物耐药性检测

Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens.

作者信息

López-Cortés Xaviera A, Manríquez-Troncoso José M, Sepúlveda Alejandra Yáñez, Soto Patricio Suazo

机构信息

Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3460000, Chile.

Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca 3460000, Chile.

出版信息

Int J Mol Sci. 2025 Jan 28;26(3):1140. doi: 10.3390/ijms26031140.

Abstract

Antimicrobial resistance (AMR) is one of the most pressing public health challenges of the 21st century. This study aims to evaluate the efficacy of mass spectral data generated by VITEK MS instruments for predicting antibiotic resistance in , , and using machine learning algorithms. Additionally, the potential of pre-trained models was assessed through transfer learning analysis. A dataset comprising 2229 mass spectra was collected, and classification algorithms, including Support Vector Machines, Random Forest, Logistic Regression, and CatBoost, were applied to predict resistance. CatBoost demonstrated a clear advantage over the other models, effectively handling complex non-linear relationships within the spectra and achieving an AUROC of 0.91 and an F1 score of 0.78 for . In contrast, transfer learning yielded suboptimal results. These findings highlight the potential of gradient-boosting techniques to enhance resistance prediction, particularly with data from less conventional platforms like VITEK MS. Furthermore, the identification of specific biomarkers using SHAP values indicates promising potential for clinical applications in early diagnosis. Future efforts focused on standardizing data and refining algorithms could expand the utility of these approaches across diverse clinical environments, supporting the global fight against AMR.

摘要

抗菌药物耐药性(AMR)是21世纪最紧迫的公共卫生挑战之一。本研究旨在评估VITEK MS仪器生成的质谱数据在使用机器学习算法预测、和中的抗生素耐药性方面的功效。此外,通过迁移学习分析评估了预训练模型的潜力。收集了一个包含2229个质谱的数据集,并应用支持向量机、随机森林、逻辑回归和CatBoost等分类算法来预测耐药性。CatBoost相对于其他模型表现出明显优势,有效处理了光谱内复杂的非线性关系,对于的受试者工作特征曲线下面积(AUROC)达到0.91,F1分数达到0.78。相比之下,迁移学习产生的结果欠佳。这些发现凸显了梯度提升技术在增强耐药性预测方面的潜力,特别是对于来自VITEK MS等不太传统平台的数据。此外,使用SHAP值识别特定生物标志物表明在早期诊断的临床应用中具有广阔前景。未来致力于数据标准化和算法优化的努力可能会扩大这些方法在不同临床环境中的效用,支持全球对抗AMR的斗争。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea61/11817502/be2f0272e058/ijms-26-01140-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验